1
|
Alkhfaji HJ, Hussein HA, Mutar MF, Kahloul M. Assessing the Premedication Properties of Sublingual Melatonin in Young Women Undergoing Cesarean Section With Spinal Anesthesia: A Double-Blind Randomized Study. Cureus 2024; 16:e59710. [PMID: 38841008 PMCID: PMC11150981 DOI: 10.7759/cureus.59710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
INTRODUCTION Preoperative anxiety can negatively impact patient outcomes by influencing the intraoperative requirements for anesthetics and analgesics, increasing postoperative pain intensity, and augmenting the need for analgesia. Moreover, it may contribute to higher rates of postoperative morbidity and mortality following certain types of surgery. This study investigates the anxiolytic and sedative properties of sublingual melatonin as a premedication agent in young females undergoing cesarean section under spinal anesthesia. METHODS A double-blind, randomized, placebo-controlled trial was conducted in Nasiriyah, Iraq. Eighty females were included, 40 in each group, based on specific inclusion and exclusion criteria. Premedication was administered in the morning, 60 minutes before the procedure. In the melatonin group (M), patients received 10 mg of sublingual melatonin, while the placebo group (P) received placebo premedication. Anxiety and sedation levels were evaluated three times: before taking premedication, five minutes before the insertion of the spinal needle, and one hour postoperatively, using the visual analog scale and Richmond Sedation Scale. RESULTS The results show a highly significant P-value regarding anxiety levels between the M Group and P Group (p-value < 0.001). There was a significant difference in the median sedation scores between the studied groups at pre-spinal insertion and postoperatively (p-value < 0.001). The mean heart rate in the M Group was significantly lower than in the P Group (p-value = 0.0019). Significant differences were noted in systolic and diastolic blood pressures between the two groups, measured five minutes before and after spinal needle insertion (p-value < 0.001). CONCLUSION These findings contribute to understanding the impact of sublingual melatonin as an anxiolytic and sedative premedication agent on patients undergoing elective cesarean sections under spinal anesthesia. Further research is warranted to fully elucidate the benefits and implications of melatonin administration in such procedures.
Collapse
Affiliation(s)
- Hussein J Alkhfaji
- Department of Anaesthesiology and Intensive Care, Ibn El Jazzar Medical Faculty of Sousse, Sousse, TUN
- Department of Anesthesia, College of Health and Medical Technologies, Al-Ayen Iraqi University, Nasiriyah, IRQ
| | - Hussein A Hussein
- Department of Anaesthesiology and Intensive Care, Ibn El Jazzar Medical Faculty of Sousse, Sousse, TUN
- Department of Anesthesia, College of Health and Medical Technologies, Al-Ayen Iraqi University, Nasiriyah, IRQ
| | - Majid F Mutar
- Department of Anaesthesiology and Intensive Care, Ibn El Jazzar Medical Faculty of Sousse, Sousse, TUN
- Department of Anesthesia, College of Health and Medical Technologies, Al-Ayen Iraqi University, Nasiriyah, IRQ
| | - Mohamed Kahloul
- Department of Anaesthesiology and Intensive Care, Teaching Hospital of Sahloul, Ibn El Jazzar Medical Faculty of Sousse, Sousse, TUN
| |
Collapse
|
2
|
De Guadalupe Quintana-Coronado M, Bravo C, Álvarez-Mon M, Ortega MA, De León-Luis JA. News in pharmacology for the main medical pathologies of gestation. Front Pharmacol 2024; 14:1240032. [PMID: 38239189 PMCID: PMC10794658 DOI: 10.3389/fphar.2023.1240032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Obstetric diseases represent a highly complex medical challenge, especially regarding its clinical approach. The use of pharmacological agents during pregnancy is one of the main therapeutic alternatives in this group of patients; however, there is a general lack of knowledge about its use, efficacy, and possible adverse effects that may occur in routine clinical practice, even among medical professionals themselves. The high percentage of pregnant women who undergo drugs at some point during pregnancy, together with the developments that have occurred in recent years in the field of pharmacology, show the need for a detailed analysis that shows the existing current knowledge and helps in the clinical decision making. In this sense, the aim of this work is to conduct a review of the available scientific literature on the novelties in pharmacology for the main medical pathologies of pregnancy. Thus, the role of this field in analgesia, antibiotic therapy, digestive, respiratory, urological, psychiatric and neurological pathologies will be detailed, evaluating the indications, precautions and considerations that must be taken into account for its use.
Collapse
Affiliation(s)
- María De Guadalupe Quintana-Coronado
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Alcalá de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| |
Collapse
|
3
|
Minich DM, Henning M, Darley C, Fahoum M, Schuler CB, Frame J. Is Melatonin the "Next Vitamin D"?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients 2022; 14:3934. [PMID: 36235587 PMCID: PMC9571539 DOI: 10.3390/nu14193934] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Melatonin has become a popular dietary supplement, most known as a chronobiotic, and for establishing healthy sleep. Research over the last decade into cancer, Alzheimer's disease, multiple sclerosis, fertility, PCOS, and many other conditions, combined with the COVID-19 pandemic, has led to greater awareness of melatonin because of its ability to act as a potent antioxidant, immune-active agent, and mitochondrial regulator. There are distinct similarities between melatonin and vitamin D in the depth and breadth of their impact on health. Both act as hormones, affect multiple systems through their immune-modulating, anti-inflammatory functions, are found in the skin, and are responsive to sunlight and darkness. In fact, there may be similarities between the widespread concern about vitamin D deficiency as a "sunlight deficiency" and reduced melatonin secretion as a result of "darkness deficiency" from overexposure to artificial blue light. The trend toward greater use of melatonin supplements has resulted in concern about its safety, especially higher doses, long-term use, and application in certain populations (e.g., children). This review aims to evaluate the recent data on melatonin's mechanisms, its clinical uses beyond sleep, safety concerns, and a thorough summary of therapeutic considerations concerning dietary supplementation, including the different formats available (animal, synthetic, and phytomelatonin), dosing, timing, contraindications, and nutrient combinations.
Collapse
Affiliation(s)
- Deanna M. Minich
- Department of Human Nutrition and Functional Medicine, University of Western States, Portland, OR 97213, USA
| | - Melanie Henning
- Department of Sports and Performance Psychology, University of the Rockies, Denver, CO 80202, USA
| | - Catherine Darley
- College of Naturopathic Medicine, National University of Natural Medicine, Portland, OR 97201, USA
| | - Mona Fahoum
- School of Naturopathic Medicine, Bastyr University, Kenmore, WA 98028, USA
| | - Corey B. Schuler
- School of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
- Department of Online Education, Northeast College of Health Sciences, Seneca Falls, NY 13148, USA
| | - James Frame
- Natural Health International Pty., Ltd., Sydney, NSW 2000, Australia
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA
| |
Collapse
|
4
|
Melatonin Attenuates Spinal Cord Injury in Mice by Activating the Nrf2/ARE Signaling Pathway to Inhibit the NLRP3 Inflammasome. Cells 2022; 11:cells11182809. [PMID: 36139384 PMCID: PMC9496911 DOI: 10.3390/cells11182809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Spinal cord injury (SCI) is a central nervous system (CNS) trauma involving inflammation and oxidative stress, which play important roles in this trauma’s pathogenesis. Therefore, controlling inflammation is an effective strategy for SCI treatment. As a hormone, melatonin is capable of producing antioxidation and anti-inflammation effects. In the meantime, it also causes a neuroprotective effect in various neurological diseases. Nrf2/ARE/NLRP3 is a well-known pathway in anti-inflammation and antioxidation, and Nrf2 can be positively regulated by melatonin. However, how melatonin regulates inflammation during SCI is poorly explored. Therefore, it was investigated in this study whether melatonin can inhibit the NLRP3 inflammasome through the Nrf2/ARE signaling pathway in a mouse SCI model. Methods: A model of SCI was established in C57BL/6 mice and PC12 cells. The motor function of mice was detected by performing an open field test, and Nissl staining and terminal deoxynucleotidyl transferase dUTP nick end labeling were carried out to evaluate the survival of neurons. Mitochondrial dysfunction was detected by transmission electron microscopy (TEM) and by assessing the mitochondrial membrane potential. In addition, the expression of NLRP3 inflammasome and oxidative-stress-related proteins were detected through Western blot and immunofluorescence double staining. Results: By inhibiting neuroinflammation and reducing neuronal death, melatonin promotes the recovery of neuromotor function. Besides this, melatonin is able to reduce the damage that causes neuronal mitochondrial dysfunction, reduce the level of reactive oxygen species (ROS) and malondialdehyde, and enhance the activity of superoxide dismutase and the production of glutathione peroxidase. Mechanically, melatonin inhibits the activation of NLRP3 inflammasomes and reduces the secretion of pro-inflammatory factors through the Nrf2/ARE signaling. Conclusions: In conclusion, melatonin inhibits the NLRP3 inflammasome through stimulation of the Nrf2/ARE pathway, thereby suppressing neuroinflammation, reducing mitochondrial dysfunction, and improving the recovery of nerve function after SCI.
Collapse
|
5
|
Wang C, An Y, Xia Z, Zhou X, Li H, Song S, Ding L, Xia X. The neuroprotective effect of melatonin in glutamate excitotoxicity of R28 cells and mouse retinal ganglion cells. Front Endocrinol (Lausanne) 2022; 13:986131. [PMID: 36313740 PMCID: PMC9596792 DOI: 10.3389/fendo.2022.986131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness. The progressive degeneration of retinal ganglion cells (RGCs) is the major characteristic of glaucoma. Even though the control of intraocular pressure could delay the loss of RGCs, current clinical treatments cannot protect them directly. The overactivation of N-methyl-D-aspartic acid (NMDA) receptors by excess glutamate (Glu) is among the important mechanisms of RGC death in glaucoma progression. Melatonin (MT) is an indole neuroendocrine hormone mainly secreted by the pineal gland. This study aimed to investigate the therapeutic effect of MT on glutamate excitotoxicity of mouse RGCs and R28 cells. The Glu-induced R28 cell excitotoxicity model and NMDA-induced retinal injury model were established. MT was applied to R28 cells and the vitreous cavity of mice by intravitreal injection. Cell counting kit-8 assay and propidium iodide/Hoechst were performed to evaluate cell viability. Reactive oxygen species and glutathione synthesis assays were used to detect the oxidative stress state of R28 cells. Retina immunofluorescence and hematoxylin and eosin staining were applied to assess RGC counts and retinal structure. Flash visual-evoked potential was performed to evaluate visual function in mice. RNA sequencing of the retina was performed to explore the underlying mechanisms of MT protection. Our results found that MT treatment could successfully protect R28 cells from Glu excitotoxicity and decrease reactive oxygen species. Also, MT rescued RGCs from NMDA-induced injury and protected visual function in mice. This study enriches the indications of MT in the treatment of glaucoma, providing practical research ideas for its comprehensive prevention and treatment.
Collapse
Affiliation(s)
- Chao Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqiong An
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohua Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xuezhi Zhou
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haibo Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Song
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lexi Ding
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaobo Xia, ; Lexi Ding,
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaobo Xia, ; Lexi Ding,
| |
Collapse
|
6
|
Elsayed NA, Boyer TM, Burd I. Fetal Neuroprotective Strategies: Therapeutic Agents and Their Underlying Synaptic Pathways. Front Synaptic Neurosci 2021; 13:680899. [PMID: 34248595 PMCID: PMC8262796 DOI: 10.3389/fnsyn.2021.680899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/28/2021] [Indexed: 01/31/2023] Open
Abstract
Synaptic signaling is integral for proper brain function. During fetal development, exposure to inflammation or mild hypoxic-ischemic insult may lead to synaptic changes and neurological damage that impairs future brain function. Preterm neonates are most susceptible to these deleterious outcomes. Evaluating clinically used and novel fetal neuroprotective measures is essential for expanding treatment options to mitigate the short and long-term consequences of fetal brain injury. Magnesium sulfate is a clinical fetal neuroprotective agent utilized in cases of imminent preterm birth. By blocking N-methyl-D-aspartate receptors, magnesium sulfate reduces glutamatergic signaling, which alters calcium influx, leading to a decrease in excitotoxicity. Emerging evidence suggests that melatonin and N-acetyl-L-cysteine (NAC) may also serve as novel putative fetal neuroprotective candidates. Melatonin has important anti-inflammatory and antioxidant properties and is a known mediator of synaptic plasticity and neuronal generation. While NAC acts as an antioxidant and a precursor to glutathione, it also modulates the glutamate system. Glutamate excitotoxicity and dysregulation can induce perinatal preterm brain injury through damage to maturing oligodendrocytes and neurons. The improved drug efficacy and delivery of the dendrimer-bound NAC conjugate provides an opportunity for enhanced pharmacological intervention. Here, we review recent literature on the synaptic pathways underlying these therapeutic strategies, discuss the current gaps in knowledge, and propose future directions for the field of fetal neuroprotective agents.
Collapse
Affiliation(s)
- Nada A. Elsayed
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Theresa M. Boyer
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Irina Burd
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Ma X, Shi Y. Whether erythropoietin can be a neuroprotective agent against premature brain injury: cellular mechanisms and clinical efficacy. Curr Neuropharmacol 2021; 20:611-629. [PMID: 34030616 DOI: 10.2174/1570159x19666210524154519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022] Open
Abstract
Preterm infants are at high risk of brain injury. With more understanding of the preterm brain injury's pathogenesis, neuroscientists are looking for more effective methods to prevent and treat it, among which erythropoietin (Epo) is considered as a prime candidate. This review tries to clarify the possible mechanisms of Epo in preterm neuroprotection and summarize updated evidence considering Epo as a pharmacological neuroprotective strategy in animal models and clinical trials. To date, various animal models have validated that Epo is an anti-apoptotic, anti-inflammatory, anti-oxidant, anti-excitotoxic, neurogenetic, erythropoietic, angiogenetic, and neurotrophic agent, thus preventing preterm brain injury. However, although the scientific rationale and preclinical data for Epo's neuroprotective effect are promising, when translated to bedside, the results vary in different studies, especially in its long-term efficacy. Based on existing evidence, it is still too early to recommend Epo as the standard treatment for preterm brain injury.
Collapse
Affiliation(s)
- Xueling Ma
- Department of Neonatology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing 400014, China
| | - Yuan Shi
- Department of Neonatology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing 400014, China
| |
Collapse
|
8
|
Maternal Melatonin Deficiency Leads to Endocrine Pathologies in Children in Early Ontogenesis. Int J Mol Sci 2021; 22:ijms22042058. [PMID: 33669686 PMCID: PMC7922827 DOI: 10.3390/ijms22042058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
The review summarizes the results of experimental and clinical studies aimed at elucidating the causes and pathophysiological mechanisms of the development of endocrine pathology in children. The modern data on the role of epigenetic influences in the early ontogenesis of unfavorable factors that violate the patterns of the formation of regulatory mechanisms during periods of critical development of fetal organs and systems and contribute to the delayed development of pathological conditions are considered. The mechanisms of the participation of melatonin in the regulation of metabolic processes and the key role of maternal melatonin in the formation of the circadian system of regulation in the fetus and in the protection of the genetic program of its morphofunctional development during pregnancy complications are presented. Melatonin, by controlling DNA methylation and histone modification, prevents changes in gene expression that are directly related to the programming of endocrine pathology in offspring. Deficiency and absence of the circadian rhythm of maternal melatonin underlies violations of the genetic program for the development of hormonal and metabolic regulatory mechanisms of the functional systems of the child, which determines the programming and implementation of endocrine pathology in early ontogenesis, contributing to its development in later life. The significance of this factor in the pathophysiological mechanisms of endocrine disorders determines a new approach to risk assessment and timely prevention of offspring diseases even at the stage of family planning.
Collapse
|
9
|
|
10
|
Berbets AM, Davydenko IS, Barbe AM, Konkov DH, Albota OM, Yuzko OM. Melatonin 1A and 1B Receptors' Expression Decreases in the Placenta of Women with Fetal Growth Restriction. Reprod Sci 2020; 28:197-206. [PMID: 32804352 DOI: 10.1007/s43032-020-00285-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/02/2020] [Indexed: 12/30/2022]
Abstract
Melatonin and its metabolites prevent oxidative stress and apoptosis, and it is actively produced by the placenta during pregnancy. Melatonin 1A and 1B receptors are present in human villous trophoblastic cells. We aimed to investigate the expression of melatonin 1A and 1B receptors in human placental tissue in the case of placental insufficiency manifested as the intrauterine growth restriction syndrome of the fetus (IUGR). Thirty-two pregnant women aged 18-36 with placental insufficiency manifested at the term 36 weeks of gestation as the IUGR syndrome (the estimated fetal weight less than the 3rd percentile) were included in the experimental group; all their babies had the diagnosis confirmed at birth, which occurred after 37 weeks of gestation. The control group consisted of 30 women with uncomplicated pregnancy of the same term. Pieces of the placental tissue were obtained after deliveries, and melatonin 1A and 1B receptors were immunoassayed; the richness of melatonin receptors in the placental tissue was estimated on the basis of immunohistochemical (IHC) staining of receptors, calculated in the IHC image score. The optical density of melatonin 1A receptors in the placentas obtained from women whose pregnancies were complicated with IUGR was significantly lower than that in the placentas from uncomplicated pregnancies: generally in the trophoblast, it was 0.095 ± 0.0009 IHC image score (in the control group, 0.194 ± 0.0015, p < 0.0001); in the apical parts of the syncytiotrophoblast, 0.108 ± 0.0016 IHC image score (in the control group, 0.221 ± 0.0013, p < 0.0001); and in the stromal cells of placental villi, 0.112 ± 0.0013 IHC image score (in the control group, 0.156 ± 0.0011, p < 0.0001). The optical density of melatonin 1B receptors in placentas obtained from women whose pregnancies were complicated with IUGR was also lower than that in the placentas from uncomplicated pregnancies: generally in the trophoblast, it was 0.165 ± 0.0019 IHC image score (in the control group, 0.231 ± 0.0013, p < 0.0001), and in the apical parts of the syncytiotrophoblast, 0.188 ± 0.0028 IHC image score (in the control group, 0.252 ± 0.0009, p < 0.0001). There was no difference found in the optical density of melatonin 1B receptors in the stromal cells of placental villi between the two groups: in the experimental group, 0.109 ± 0.006 IHC image score, and in the control group, 0.114 ± 0.0011 (p = 0.65). Melatonin receptors 1A and 1B are significantly less expressed in the placental tissue in the case that pregnancy is complicated with placental insufficiency, manifested as the intrauterine growth restriction syndrome of the fetus.
Collapse
Affiliation(s)
- Andrii M Berbets
- Higher State Educational Establishment of Ukraine "Bukovinian State Medical University", Chernivtsi, Ukraine.
| | - Igor S Davydenko
- Higher State Educational Establishment of Ukraine "Bukovinian State Medical University", Chernivtsi, Ukraine
| | - Adrian M Barbe
- Higher State Educational Establishment of Ukraine "Bukovinian State Medical University", Chernivtsi, Ukraine
| | - Dmytro H Konkov
- National Pirogov Memorial Medical University, Vinnytsia, Ukraine
| | - Olena M Albota
- Higher State Educational Establishment of Ukraine "Bukovinian State Medical University", Chernivtsi, Ukraine
| | - Oleksandr M Yuzko
- Higher State Educational Establishment of Ukraine "Bukovinian State Medical University", Chernivtsi, Ukraine
| |
Collapse
|
11
|
Abstract
Perinatal brain injury is a major cause of neurological disability in both premature and term infants. In this review, we summarize the evidence behind some established neuroprotective practices such as administration of antenatal steroids, intrapartum magnesium for preterm delivery, and therapeutic hypothermia. In addition, we examine emerging practices such as delayed cord clamping, postnatal magnesium administration, recombinant erythropoietin, and non-steroidal anti-inflammatory agents and finally inform the reader about novel interventions, some of which are currently in trials, such as xenon, melatonin, topiramate, allopurinol, creatine, and autologous cord cell therapy.
Collapse
Affiliation(s)
- Samata Singhi
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA
- Department of Pediatric Neurology, Johns Hopkins Medicine, Baltimore, MD, 21287, USA
| | - Michael Johnston
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA
| |
Collapse
|
12
|
Perinatal Use of Melatonin for Offspring Health: Focus on Cardiovascular and Neurological Diseases. Int J Mol Sci 2019; 20:ijms20225681. [PMID: 31766163 PMCID: PMC6888176 DOI: 10.3390/ijms20225681] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular and neurological diseases can originate in early life. Melatonin, a biologically active substance, acts as a pleiotropic hormone essential for pregnancy and fetal development. Maternal melatonin can easily pass the placenta and provide photoperiodic signals to the fetus. Though melatonin uses in pregnant or lactating women have not yet been recommended, there is a growing body of evidence from animal studies in support of melatonin as a reprogramming strategy to prevent the developmental programming of cardiovascular and neurological diseases. Here, we review several key themes in melatonin use in pregnancy and lactation within offspring health and disease. We have particularly focused on the following areas: the pathophysiological roles of melatonin in pregnancy, lactation, and fetal development; clinical uses of melatonin in fetal and neonatal diseases; experimental evidence supporting melatonin as a reprogramming therapy to prevent cardiovascular and neurological diseases; and reprogramming mechanisms of melatonin within developmental programming. The targeting of melatonin uses in pregnancy and lactation will be valuable in the prevention of various adult chronic diseases in later life, and especially cardiovascular and neurological diseases.
Collapse
|
13
|
Yurova MN, Tyndyk ML, Popovich IG, Golubev AG, Anisimov VN. Gender Specificity of the Effect of Neonatal Melatonin Administration on Lifespan and Age-Associated Pathology in 129/Sv Mice. ADVANCES IN GERONTOLOGY 2019. [DOI: 10.1134/s2079057019030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Shaw JC, Berry MJ, Dyson RM, Crombie GK, Hirst JJ, Palliser HK. Reduced Neurosteroid Exposure Following Preterm Birth and Its' Contribution to Neurological Impairment: A Novel Avenue for Preventative Therapies. Front Physiol 2019; 10:599. [PMID: 31156466 PMCID: PMC6529563 DOI: 10.3389/fphys.2019.00599] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Children born preterm are at an increased risk of developing cognitive problems and neuro-behavioral disorders such as attention deficit hyperactivity disorder (ADHD) and anxiety. Whilst neonates born at all gestational ages, even at term, can experience poor cognitive outcomes due to birth-complications such as birth asphyxia, it is becoming widely known that children born preterm in particular are at significant risk for learning difficulties with an increased utilization of special education resources, when compared to their healthy term-born peers. Additionally, those born preterm have evidence of altered cerebral myelination with reductions in white matter volumes of the frontal cortex, hippocampus and cerebellum evident on magnetic resonance imaging (MRI). This disruption to myelination may underlie some of the pathophysiology of preterm-associated brain injury. Compared to a fetus of the same post-conceptional age, the preterm newborn loses access to in utero factors that support and promote healthy brain development. Furthermore, the preterm ex utero environment is hostile to the developing brain with a myriad of environmental, biochemical and excitotoxic stressors. Allopregnanolone is a key neuroprotective fetal neurosteroid which has promyelinating effects in the developing brain. Preterm birth leads to an abrupt loss of the protective effects of allopregnanolone, with a dramatic drop in allopregnanolone concentrations in the preterm neonatal brain compared to the fetal brain. This occurs in conjunction with reduced myelination of the hippocampus, subcortical white matter and cerebellum; thus, damage to neurons, astrocytes and especially oligodendrocytes of the developing nervous system can occur in the vulnerable developmental window prior to term as a consequence reduced allopregnanolone. In an effort to prevent preterm-associated brain injury a number of therapies have been considered, but to date, other than antenatal magnesium sulfate and corticosteroid therapy, none have become part of standard clinical care for vulnerable infants. Therefore, there remains an urgent need for improved therapeutic options to prevent brain injury in preterm neonates. The actions of the placentally derived neurosteroid allopregnanolone on GABAA receptor signaling has a major role in late gestation neurodevelopment. The early loss of this intrauterine neurotrophic support following preterm birth may be pivotal to development of neurodevelopmental morbidity. Thus, restoring the in utero neurosteroid environment for preterm neonates may represent a new and clinically feasible treatment option for promoting better trajectories of myelination and brain development, and therefore reducing neurodevelopmental disorders in children born preterm.
Collapse
Affiliation(s)
- Julia C. Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Mary J. Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, Wellington, New Zealand
| | - Rebecca M. Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, Wellington, New Zealand
| | - Gabrielle K. Crombie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Jonathan J. Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Hannah K. Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
15
|
Finch-Edmondson M, Morgan C, Hunt RW, Novak I. Emergent Prophylactic, Reparative and Restorative Brain Interventions for Infants Born Preterm With Cerebral Palsy. Front Physiol 2019; 10:15. [PMID: 30745876 PMCID: PMC6360173 DOI: 10.3389/fphys.2019.00015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
Worldwide, an estimated 15 million babies are born preterm (<37 weeks' gestation) every year. Despite significant improvements in survival rates, preterm infants often face a lifetime of neurodevelopmental disability including cognitive, behavioral, and motor impairments. Indeed, prematurity remains the largest risk factor for the development of cerebral palsy. The developing brain of the preterm infant is particularly fragile; preterm babies exhibit varying severities of cerebral palsy arising from reductions in both cerebral white and gray matter volumes, as well as altered brain microstructure and connectivity. Current intensive care therapies aim to optimize cardiovascular and respiratory function to protect the brain from injury by preserving oxygenation and blood flow. If a brain injury does occur, definitive diagnosis of cerebral palsy in the first few hours and weeks of life is difficult, especially when the lesions are subtle and not apparent on cranial ultrasound. However, early diagnosis of mildly affected infants is critical, because these are the patients most likely to respond to emergent treatments inducing neuroplasticity via high-intensity motor training programs and regenerative therapies involving stem cells. A current controversy is whether to test universal treatment in all infants at risk of brain injury, accepting that some patients never required treatment, because the perceived potential benefits outweigh the risk of harm. Versus, waiting for a diagnosis before commencing targeted treatment for infants with a brain injury, and potentially missing the therapeutic window. In this review, we discuss the emerging prophylactic, reparative, and restorative brain interventions for infants born preterm, who are at high risk of developing cerebral palsy. We examine the current evidence, considering the timing of the intervention with relation to the proposed mechanism/s of action. Finally, we consider the development of novel markers of preterm brain injury, which will undoubtedly lead to improved diagnostic and prognostic capability, and more accurate instruments to assess the efficacy of emerging interventions for this most vulnerable group of infants.
Collapse
Affiliation(s)
- Megan Finch-Edmondson
- The Discipline of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, The University of Sydney Medical School, Sydney, NSW, Australia
- Cerebral Palsy Alliance Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Catherine Morgan
- The Discipline of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, The University of Sydney Medical School, Sydney, NSW, Australia
- Cerebral Palsy Alliance Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Rod W. Hunt
- Department of Neonatal Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Iona Novak
- The Discipline of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, The University of Sydney Medical School, Sydney, NSW, Australia
- Cerebral Palsy Alliance Research Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Medley N, Vogel JP, Care A, Alfirevic Z. Interventions during pregnancy to prevent preterm birth: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev 2018; 11:CD012505. [PMID: 30480756 PMCID: PMC6516886 DOI: 10.1002/14651858.cd012505.pub2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Preterm birth (PTB) is a major factor contributing to global rates of neonatal death and to longer-term health problems for surviving infants. Both the World Health Organization and the United Nations consider prevention of PTB as central to improving health care for pregnant women and newborn babies. Current preventative clinical strategies show varied efficacy in different populations of pregnant women, frustrating women and health providers alike, while researchers call for better understanding of the underlying mechanisms that lead to PTB. OBJECTIVES We aimed to summarise all evidence for interventions relevant to the prevention of PTB as reported in Cochrane systematic reviews (SRs). We intended to highlight promising interventions and to identify SRs in need of an update. METHODS We searched the Cochrane Database of Systematic Reviews (2 November 2017) with key words to capture any Cochrane SR that prespecified or reported a PTB outcome. Inclusion criteria focused on pregnant women without signs of preterm labour or ruptured amniotic membranes. We included reviews of interventions for pregnant women irrespective of their risk status. We followed standard Cochrane methods.We applied GRADE criteria to evaluate the quality of SR evidence. We assigned graphic icons to classify the effectiveness of interventions as: clear evidence of benefit; clear evidence of harm; clear evidence of no effect or equivalence; possible benefit; possible harm; or unknown benefit or harm. We defined clear evidence of benefit and clear evidence of harm to be GRADE moderate- or high-quality evidence with a confidence interval (CI) that does not cross the line of no effect. Clear evidence of no effect or equivalence is GRADE moderate- or high-quality evidence with a narrow CI crossing the line of no effect. Possible benefit and possible harm refer to GRADE low-quality evidence with a clear effect (CI does not cross the line of no effect) or GRADE moderate- or high-quality evidence with a wide CI. Unknown harm or benefit refers to GRADE low- or very low-quality evidence with a wide CI. MAIN RESULTS We included 83 SRs; 70 had outcome data. Below we highlight key results from a subset of 36 SRs of interventions intended to prevent PTB. OUTCOME preterm birthClear evidence of benefitFour SRs reported clear evidence of benefit to prevent specific populations of pregnant women from giving birth early, including midwife-led continuity models of care versus other models of care for all women; screening for lower genital tract infections for pregnant women less than 37 weeks' gestation and without signs of labour, bleeding or infection; and zinc supplementation for pregnant women without systemic illness. Cervical cerclage showed clear benefit for women with singleton pregnancy and high risk of PTB only.Clear evidence of harmNo included SR reported clear evidence of harm.No effect or equivalenceFor pregnant women at high risk of PTB, bedrest for women with singleton pregnancy and antibiotic prophylaxis during the second and third trimester were of no effect or equivalent to a comparator.Possible benefitFour SRs found possible benefit in: group antenatal care for all pregnant women; antibiotics for pregnant women with asymptomatic bacteriuria; pharmacological interventions for smoking cessation for pregnant women who smoke; and vitamin D supplements alone for women without pre-existing conditions such as diabetes.Possible harmOne SR reported possible harm (increased risk of PTB) with intramuscular progesterone, but this finding is only relevant to women with multiple pregnancy and high risk of PTB. Another review found possible harm with vitamin D, calcium and other minerals for pregnant women without pre-existing conditions. OUTCOME perinatal deathClear evidence of benefitTwo SRs reported clear evidence of benefit to reduce pregnant women's risk of perinatal death: midwife-led continuity models of care for all pregnant women; and fetal and umbilical Doppler for high-risk pregnant women.Clear evidence of harmNo included SR reported clear evidence of harm.No effect or equivalenceFor pregnant women at high risk of PTB, antibiotic prophylaxis during the second and third trimester was of no effect or equivalent to a comparator.Possible benefitOne SR reported possible benefit with cervical cerclage for women with singleton pregnancy and high risk of PTB.Possible harmOne SR reported possible harm associated with a reduced schedule of antenatal visits for pregnant women at low risk of pregnancy complications; importantly, these women already received antenatal care in settings with limited resources. OUTCOMES preterm birth and perinatal deathUnknown benefit or harmFor pregnant women at high risk of PTB for any reason including multiple pregnancy, home uterine monitoring was of unknown benefit or harm. For pregnant women at high risk due to multiple pregnancy: bedrest, prophylactic oral betamimetics, vaginal progesterone and cervical cerclage were all of unknown benefit or harm. AUTHORS' CONCLUSIONS Implications for practiceThe overview serves as a map and guide to all current evidence relevant to PTB prevention published in the Cochrane Library. Of 70 SRs with outcome data, we identified 36 reviews of interventions with the aim of preventing PTB. Just four of these SRs had evidence of clear benefit to women, with an additional four SRs reporting possible benefit. No SR reported clear harm, which is an important finding for women and health providers alike.The overview summarises no evidence for the clinically important interventions of cervical pessary, cervical length assessment and vaginal progesterone because these Cochrane Reviews were not current. These are active areas for PTB research.The graphic icons we assigned to SR effect estimates do not constitute clinical guidance or an endorsement of specific interventions for pregnant women. It remains critical for pregnant women and their healthcare providers to carefully consider whether specific strategies to prevent PTB will be of benefit for individual women, or for specific populations of women.Implications for researchFormal consensus work is needed to establish standard language for overviews of reviews and to define the limits of their interpretation.Clinicians, researchers and funders must address the lack of evidence for interventions relevant to women at high risk of PTB due to multiple pregnancy.
Collapse
Affiliation(s)
- Nancy Medley
- The University of LiverpoolCochrane Pregnancy and Childbirth Group, Department of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Joshua P Vogel
- Burnet InstituteMaternal and Child Health85 Commercial RoadMelbourneAustralia
| | - Angharad Care
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Zarko Alfirevic
- The University of LiverpoolDepartment of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | | |
Collapse
|
17
|
Netto CA, Sanches EF, Odorcyk F, Duran-Carabali LE, Sizonenko SV. Pregnancy as a valuable period for preventing hypoxia-ischemia brain damage. Int J Dev Neurosci 2018; 70:12-24. [PMID: 29920306 DOI: 10.1016/j.ijdevneu.2018.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022] Open
Abstract
Neonatal brain Hypoxia-Ischemia (HI) is one of the major causes of infant mortality and lifelong neurological disabilities. The knowledge about the physiopathological mechanisms involved in HI lesion have increased in recent years, however these findings have not been translated into clinical practice. Current therapeutic approaches remain limited; hypothermia, used only in term or near-term infants, is the golden standard. Epidemiological evidence shows a link between adverse prenatal conditions and increased risk for diseases, health problems, and psychological outcomes later in life, what makes pregnancy a relevant period for preventing future brain injury. Here, we review experimental literature regarding preventive interventions used during pregnancy, i.e., previous to the HI injury, encompassing pharmacological, nutritional and/or behavioral strategies. Literature review used PubMed database. A total of forty one studies reported protective properties of maternal treatments preventing perinatal hypoxia-ischemia injury in rodents. Pharmacological agents and dietary supplementation showed mainly anti-excitotoxicity, anti-oxidant or anti-apoptotic properties. Interestingly, maternal preconditioning, physical exercise and environmental enrichment seem to engage the same referred mechanisms in order to protect neonatal brain against injury. This construct must be challenged by further studies to clearly define the main mechanisms responsible for neuroprotection to be explored in experimental context, as well as to test their potential in clinical settings.
Collapse
Affiliation(s)
- C A Netto
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.
| | - E F Sanches
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - F Odorcyk
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - L E Duran-Carabali
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - S V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Posadzki PP, Bajpai R, Kyaw BM, Roberts NJ, Brzezinski A, Christopoulos GI, Divakar U, Bajpai S, Soljak M, Dunleavy G, Jarbrink K, Nang EEK, Soh CK, Car J. Melatonin and health: an umbrella review of health outcomes and biological mechanisms of action. BMC Med 2018; 16:18. [PMID: 29397794 PMCID: PMC5798185 DOI: 10.1186/s12916-017-1000-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our aims were to evaluate critically the evidence from systematic reviews as well as narrative reviews of the effects of melatonin (MLT) on health and to identify the potential mechanisms of action involved. METHODS An umbrella review of the evidence across systematic reviews and narrative reviews of endogenous and exogenous (supplementation) MLT was undertaken. The Oxman checklist for assessing the methodological quality of the included systematic reviews was utilised. The following databases were searched: MEDLINE, EMBASE, Web of Science, CENTRAL, PsycINFO and CINAHL. In addition, reference lists were screened. We included reviews of the effects of MLT on any type of health-related outcome measure. RESULTS Altogether, 195 reviews met the inclusion criteria. Most were of low methodological quality (mean -4.5, standard deviation 6.7). Of those, 164 did not pool the data and were synthesised narratively (qualitatively) whereas the remaining 31 used meta-analytic techniques and were synthesised quantitatively. Seven meta-analyses were significant with P values less than 0.001 under the random-effects model. These pertained to sleep latency, pre-operative anxiety, prevention of agitation and risk of breast cancer. CONCLUSIONS There is an abundance of reviews evaluating the effects of exogenous and endogenous MLT on health. In general, MLT has been shown to be associated with a wide variety of health outcomes in clinically and methodologically heterogeneous populations. Many reviews stressed the need for more high-quality randomised clinical trials to reduce the existing uncertainties.
Collapse
Affiliation(s)
- Pawel P Posadzki
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore.
| | - Ram Bajpai
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Bhone Myint Kyaw
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Nicola J Roberts
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Amnon Brzezinski
- The Hebrew University Medical School, Hadassah Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - George I Christopoulos
- Nanyang Business School, Division of Strategy Management and Organisation, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ushashree Divakar
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Shweta Bajpai
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Michael Soljak
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Gerard Dunleavy
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Krister Jarbrink
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Ei Ei Khaing Nang
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
| | - Chee Kiong Soh
- School of Civil and Environmental Engineering, College of Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Josip Car
- Centre for Population Health Sciences, 11 Mandalay Road, Level 18 Clinical Sciences Building, Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University , Singapore, 308232, Singapore
- Global eHealth Unit, School of Public Health, Imperial College London, London, W6 8RP, UK
| |
Collapse
|
19
|
Martinello KA, Shepherd E, Middleton P, Crowther CA. Allopurinol for women in pregnancy for neuroprotection of the fetus. Cochrane Database Syst Rev 2017. [DOI: 10.1002/14651858.cd012881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kathryn A Martinello
- The University of Adelaide, Women's and Children's Hospital; Department of Neonatal and Perinatal Medicine; 72 King William Road Adelaide South Australia Australia 5006
- Institute for Women's Health, University College London; Department of Neonatology; London UK
| | - Emily Shepherd
- The University of Adelaide; ARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and Gynaecology; Adelaide South Australia Australia 5006
| | - Philippa Middleton
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research Institute; Women's and Children's Hospital 72 King William Road Adelaide South Australia Australia 5006
| | - Caroline A Crowther
- The University of Adelaide; ARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and Gynaecology; Adelaide South Australia Australia 5006
- The University of Auckland; Liggins Institute; Private Bag 92019 85 Park Road Auckland New Zealand
| |
Collapse
|
20
|
Quiroz DL. PREVENCIÓN PRENATAL DE DAÑO NEUROLÓGICO EN PREMATURO EXTREMO. REVISTA MÉDICA CLÍNICA LAS CONDES 2016. [DOI: 10.1016/j.rmclc.2016.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|