1
|
Juneja K, Afroze S, Goti Z, Sahu S, Asawa S, Bhuchakra HP, Natarajan B. Beyond therapeutic potential: a systematic investigation of ketamine misuse in patients with depressive disorders. DISCOVER MENTAL HEALTH 2024; 4:23. [PMID: 38951348 PMCID: PMC11217219 DOI: 10.1007/s44192-024-00077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Ketamine, a pharmacological agent that acts as an antagonist of the N-methyl-D-aspartate (NMDA) receptor, has garnered considerable interest because of its notable and expeditious antidepressant properties observed in individuals diagnosed with major depressive disorder (MDD) who exhibit resistance to conventional therapeutic interventions. A comprehensive and rigorous systematic review was undertaken to evaluate the prevalence of ketamine abuse undergoing ketamine treatment for depressive disorders. A comprehensive search was conducted across the electronic databases to identify pertinent studies published between 2021 and 2023. The present investigation incorporated a comprehensive range of studies encompassing the abuse or misuse of ketamine, including case reports, observational studies, and clinical trials. Data extraction and quality assessment were conducted in accordance with predetermined criteria. The findings of this systematic review demonstrate the importance of monitoring and addressing ketamine abuse in patients receiving ketamine treatment for depressive disorders like MDD. The wide range of reported prevalence rates highlights the need for standardized criteria and measures for defining and assessing ketamine abuse. This study presents a significant contribution to the field by introducing a novel screening questionnaire and assessment algorithm designed to identify and evaluate ketamine misuse among major depressive disorder (MDD) patients undergoing ketamine treatment. This innovative tool holds the potential to enhance clinical practice by providing healthcare professionals with a standardized approach to promptly detect and address ketamine misuse. The integration of this screening tool into routine care protocols can facilitate more effective monitoring and management of ketamine misuse in this population, ultimately leading to improved patient outcomes and safety.
Collapse
Affiliation(s)
| | - Sabah Afroze
- Shadan Hospital and Institute of Medical Sciences, Hyderabad, India
| | - Zeel Goti
- Government Medical College, Surat, India
| | | | | | | | | |
Collapse
|
2
|
Rodolico A, Cutrufelli P, Di Francesco A, Aguglia A, Catania G, Concerto C, Cuomo A, Fagiolini A, Lanza G, Mineo L, Natale A, Rapisarda L, Petralia A, Signorelli MS, Aguglia E. Efficacy and safety of ketamine and esketamine for unipolar and bipolar depression: an overview of systematic reviews with meta-analysis. Front Psychiatry 2024; 15:1325399. [PMID: 38362031 PMCID: PMC10867194 DOI: 10.3389/fpsyt.2024.1325399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Unipolar and bipolar depression present treatment challenges, with patients sometimes showing limited or no response to standard medications. Ketamine and its enantiomer, esketamine, offer promising alternative treatments that can quickly relieve suicidal thoughts. This Overview of Reviews (OoR) analyzed and synthesized systematic reviews (SRs) with meta-analysis on randomized clinical trials (RCTs) involving ketamine in various formulations (intravenous, intramuscular, intranasal, subcutaneous) for patients with unipolar or bipolar depression. We evaluated the efficacy and safety of ketamine and esketamine in treating major depressive episodes across various forms, including unipolar, bipolar, treatment-resistant, and non-resistant depression, in patient populations with and without suicidal ideation, aiming to comprehensively assess their therapeutic potential and safety profile. METHODS Following PRIOR guidelines, this OoR's protocol was registered on Implasy (ID:202150049). Searches in PubMed, Scopus, Cochrane Library, and Epistemonikos focused on English-language meta-analyses of RCTs of ketamine or esketamine, as monotherapy or add-on, evaluating outcomes like suicide risk, depressive symptoms, relapse, response rates, and side effects. We included studies involving both suicidal and non-suicidal patients; all routes and formulations of administration (intravenous, intramuscular, intranasal) were considered, as well as all available comparisons with control interventions. We excluded meta-analysis in which the intervention was used as anesthesia for electroconvulsive therapy or with a randomized ascending dose design. The selection, data extraction, and quality assessment of studies were carried out by pairs of reviewers in a blinded manner. Data on efficacy, acceptability, and tolerability were extracted. RESULTS Our analysis included 26 SRs and 44 RCTs, with 3,316 subjects. The intervention is effective and well-tolerated, although the quality of the included SRs and original studies is poor, resulting in low certainty of evidence. LIMITATIONS This study is limited by poor-quality SRs and original studies, resulting in low certainty of the evidence. Additionally, insufficient available data prevents differentiation between the effects of ketamine and esketamine in unipolar and bipolar depression. CONCLUSION While ketamine and esketamine show promising therapeutic potential, the current evidence suffers from low study quality. Enhanced methodological rigor in future research will allow for a more informed application of these interventions within the treatment guidelines for unipolar and bipolar depression. SYSTEMATIC REVIEW REGISTRATION [https://inplasy.com/inplasy-2021-5-0049/], identifier (INPLASY202150049).
Collapse
Affiliation(s)
- Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| | - Pierfelice Cutrufelli
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| | - Antonio Di Francesco
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gaetano Catania
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
- University of Catania, Catania, Italy
| | - Carmen Concerto
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| | - Alessandro Cuomo
- Department of Molecular Medicine, University of Siena, Siena, Italy
| | - Andrea Fagiolini
- Department of Molecular Medicine, University of Siena, Siena, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Ludovico Mineo
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| | - Antimo Natale
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
- Department of Psychiatry, Adult Psychiatry Service (SPA), University Hospitals of Geneva (HUG), Geneva, Switzerland
| | - Laura Rapisarda
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Antonino Petralia
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| | - Eugenio Aguglia
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Jelovac A, McCaffrey C, Terao M, Shanahan E, Mohamed E, Whooley E, McDonagh K, McDonogh S, Igoe A, Loughran O, Shackleton E, O'Neill C, McLoughlin DM. Study protocol for Ketamine as an adjunctive therapy for major depression (2): a randomised controlled trial (KARMA-Dep [2]). BMC Psychiatry 2023; 23:850. [PMID: 37974160 PMCID: PMC10655414 DOI: 10.1186/s12888-023-05365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Depression is a common psychiatric disorder and a leading cause of disability worldwide. Conventional monoaminergic antidepressants have limited efficacy and take weeks to exert a therapeutic effect. Single infusions of subanaesthetic doses of ketamine exhibit rapid antidepressant action but effects are transient and relapse is common. One potential strategy for increasing ketamine's antidepressant efficacy and/or prolonging its therapeutic benefit may be serial infusions. There is limited evidence on the efficacy and safety of repeated ketamine infusions against an active comparator. METHODS This protocol describes an ongoing pragmatic, randomised, controlled, parallel-group, patient- and rater-blind, superiority trial. Eligible adult inpatients with a confirmed DSM-5 diagnosis of a major depressive episode (unipolar or bipolar) are randomly allocated in a 1:1 ratio to a course of up to eight infusions of ketamine or midazolam twice-weekly over four weeks. The primary objective is to assess the efficacy of serial adjunctive ketamine infusions versus active comparator midazolam by measuring Montgomery-Åsberg Depression Rating Scale score difference between arms from before the first infusion to 24 h after the final infusion, supplemented by a 95% confidence interval. To facilitate generalisability of results, the trial takes place under "real world" conditions with both groups continuing to receive regular inpatient care including treatment-as-usual pharmacotherapy, nursing care, and psychological and other therapies during the randomised treatment phase and regular outpatient care thereafter. Participants are monitored for relapse during a 24-week follow-up after the end of the randomised phase. Secondary objectives of the trial are to assess: response and remission rates at the end of randomised phase; relapse status during the 24-week follow-up after the end of the randomised phase; the safety and tolerability of repeated ketamine infusions regarding psychotomimetic and other psychiatric side effects, cognitive side effects, as well as withdrawal symptoms, haemodynamic stability, neurological, urological, and other physical side effects; and quality of life and cost-effectiveness. DISCUSSION There is an unmet clinical need for rapidly-acting novel antidepressants. This trial will provide efficacy, safety and health economic data on serial ketamine infusions and thus help inform clinical practice on the potential role of this treatment in the management of depression. TRIAL REGISTRATION EudraCT 2019-003109-92. Registered 2 October 2019. CLINICALTRIALS gov NCT04939649. Registered 25 June 2021.
Collapse
Affiliation(s)
- Ana Jelovac
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, D08 K7YW, Ireland
| | - Cathal McCaffrey
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, D08 K7YW, Ireland
| | - Masashi Terao
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, D08 K7YW, Ireland
| | - Enda Shanahan
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, D08 K7YW, Ireland
| | - Enas Mohamed
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, D08 K7YW, Ireland
| | - Emma Whooley
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, D08 K7YW, Ireland
| | - Kelly McDonagh
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, D08 K7YW, Ireland
| | - Sarah McDonogh
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, D08 K7YW, Ireland
| | - Anna Igoe
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, D08 K7YW, Ireland
| | - Orlaith Loughran
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, D08 K7YW, Ireland
| | - Ellie Shackleton
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, D08 K7YW, Ireland
| | - Ciaran O'Neill
- Centre for Public Health, Global Research Institute for Health Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Declan M McLoughlin
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin, D08 K7YW, Ireland.
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Successful use of ketamine to treat severe depression with suicidality post-COVID-19 - A case report. PSYCHIATRY RESEARCH CASE REPORTS 2023; 2:100100. [PMID: 36597498 PMCID: PMC9800325 DOI: 10.1016/j.psycr.2022.100100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Every second patient who suffers from COVID-19 experiences is at risk for depression. The treatment of severe depression with suicidal risk is challenging in patients with COVID-19 given the restrictions in access to and safety concerns with the use of electroconvulsive therapy during the COVID pandemic. Although ketamine is effective in treating depression, especially in presence of acute suicidality, to date, there are no reports on ketamine use to treat severe depression in the context of COVID-19. In this case report, we describe the success of ketamine to treat a person with severe depression and suicidality following COVID-19 infection.
Collapse
|
5
|
Yu Y, Quan J, Zou M, Zhao W, Su Y, Xu Y. Effects of ketamine-induced H3K9 hypoacetylation during pregnancy on cardiogenesis of mouse offspring. Birth Defects Res 2023; 115:770-781. [PMID: 36899481 DOI: 10.1002/bdr2.2168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Prenatal exposure to adverse factors can cause congenital heart defects. Ketamine, a widely used anesthetic drug, produces several adverse reactions such as tachycardia, hypertension, and laryngospasm, especially in pediatric patients. This study aimed to detect the effects of ketamine exposure during pregnancy on the cardiogenesis of mouse offspring and the potential mechanisms. METHODS In this study, ketamine at an addictive dose (5 mg/kg) was administered to mice during early gestation to explore the epigenetic mechanism of its causing cardiac dysplasia. The cardiac morphology of the mouse offspring was observed through hematoxylin-eosin staining and transmission electron microscopy. The heart function of one-month-old neonates was detected by echocardiography. The expression of cardiomyogenesis-related genes was detected by western blot and RT-qPCR. The acetylation level of histone H3K9 at the Mlc2 promoter and its deacetylase level and activity were detected by CHIP-qPCR, RT-qPCR, and ELISA, respectively. RESULTS Our data revealed that ketamine exposure during pregnancy could cause cardiac enlargement, myocardial sarcomere disorganization, and decreased cardiac contractile function in mouse offspring. Moreover, ketamine reduced the expression of Myh6, Myh7, Mlc2, Mef2c, and cTnI. The histone H3K9 acetylation level at the Mlc2 promoter was down-regulated by increasing the histone deacetylase activity and HDAC3 level upon ketamine administration. CONCLUSIONS Our work indicates that H3K9 acetylation is a vital player in cardiac dysplasia in offspring caused by prenatal ketamine exposure and HDAC3 is a key regulatory factor.
Collapse
Affiliation(s)
- Yujuan Yu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Anesthesiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Sichuan, China
| | - Junjun Quan
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mou Zou
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Wei Zhao
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Yujuan Su
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ying Xu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
6
|
Bosch OG, Halm S, Seifritz E. Psychedelics in the treatment of unipolar and bipolar depression. Int J Bipolar Disord 2022; 10:18. [PMID: 35788817 PMCID: PMC9256889 DOI: 10.1186/s40345-022-00265-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
This is a narrative review about the role of classic and two atypical psychedelics in the treatment of unipolar and bipolar depression. Since the 1990s, psychedelics experience a renaissance in biomedical research. The so-called classic psychedelics include lysergic acid diethylamide (LSD), psilocybin, mescaline and ayahuasca. Characteristic effects like alterations in sensory perception, as well as emotion- and self-processing are induced by stimulation of serotonin 2A receptors in cortical areas. The new paradigm of psychedelic-assisted psychotherapy suggests a therapeutic framework in which a safely conducted psychedelic experience is integrated into a continuous psychotherapeutic process. First randomized, controlled trials with psilocybin show promising efficacy, tolerability, and adherence in the treatment of unipolar depression. On the other hand, classic psychedelics seem to be associated with the induction of mania, which is an important issue to consider for the design of research and clinical protocols. So called atypical psychedelics are a heterogeneous group with overlapping subjective effects but different neurobiological mechanisms. Two examples of therapeutic value in psychiatry are 3,4-methylenedioxymethamphetamine (MDMA) and ketamine. Since 2020 the ketamine enantiomer esketamine has been granted international approval for treatment-resistant unipolar depression, and also first evidence exists for the therapeutic efficacy of ketamine in bipolar depression. Whether psychedelics will fulfil current expectations and find their way into broader clinical use will depend on future rigorous clinical trials with larger sample sizes. A well-considered therapeutic and legal framework will be crucial for these substances to create new treatment settings and a potential paradigm shift.
Collapse
Affiliation(s)
- Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, PO Box 1931, 8032, Zurich, Switzerland.
| | - Simon Halm
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, PO Box 1931, 8032, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, PO Box 1931, 8032, Zurich, Switzerland
| |
Collapse
|
7
|
Rygvold TW, Hatlestad-Hall C, Elvsåshagen T, Moberget T, Andersson S. Long-Term Potentiation-Like Visual Synaptic Plasticity Is Negatively Associated With Self-Reported Symptoms of Depression and Stress in Healthy Adults. Front Hum Neurosci 2022; 16:867675. [PMID: 35601905 PMCID: PMC9119023 DOI: 10.3389/fnhum.2022.867675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Long-term potentiation (LTP) is one of the most extensively studied forms of neuroplasticity and is considered the strongest candidate mechanism for memory and learning. The use of event-related potentials and sensory stimulation paradigms has allowed for the translation from animal studies to non-invasive studies of LTP-like synaptic plasticity in humans. Accumulating evidence suggests that synaptic plasticity as measured by stimulus-specific response modulation is reduced in neuropsychiatric disorders such as major depressive disorder (MDD), bipolar disorders and schizophrenia, suggesting that impaired synaptic plasticity plays a part in the underlying pathophysiology of these disorders. This is in line with the neuroplasticity hypothesis of depression, which postulate that deficits in neuroplasticity might be a common pathway underlying depressive disorders. The current study aims to replicate and confirm earlier reports that visual stimulus-specific response modulation is a viable probe into LTP-like synaptic plasticity in a large sample of healthy adults (n = 111). Further, this study explores whether impairments in LTP-like synaptic plasticity is associated with self-reported subclinical depressive symptoms and stress in a healthy population. Consistent with prior research, the current study replicated and confirmed reports demonstrating significant modulation of visual evoked potentials (VEP) following visual high-frequency stimulation. Current results further indicate that reduced LTP-like synaptic plasticity is associated with higher levels of self-reported symptoms of depression and perceived stress. This indicate that LTP-like plasticity is sensitive to sub-clinical levels of psychological distress, and might represent a vulnerability marker for the development of depressive symptoms.
Collapse
Affiliation(s)
- Trine Waage Rygvold
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | | | | | - Torgeir Moberget
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Stein Andersson
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
McGrath T, Baskerville R, Rogero M, Castell L. Emerging Evidence for the Widespread Role of Glutamatergic Dysfunction in Neuropsychiatric Diseases. Nutrients 2022; 14:nu14050917. [PMID: 35267893 PMCID: PMC8912368 DOI: 10.3390/nu14050917] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The monoamine model of depression has long formed the basis of drug development but fails to explain treatment resistance or associations with stress or inflammation. Recent animal research, clinical trials of ketamine (a glutamate receptor antagonist), neuroimaging research, and microbiome studies provide increasing evidence of glutamatergic dysfunction in depression and other disorders. Glutamatergic involvement across diverse neuropathologies including psychoses, neurodevelopmental, neurodegenerative conditions, and brain injury forms the rationale for this review. Glutamate is the brain's principal excitatory neurotransmitter (NT), a metabolic and synthesis substrate, and an immune mediator. These overlapping roles and multiple glutamate NT receptor types complicate research into glutamate neurotransmission. The glutamate microcircuit comprises excitatory glutamatergic neurons, astrocytes controlling synaptic space levels, through glutamate reuptake, and inhibitory GABA interneurons. Astroglia generate and respond to inflammatory mediators. Glutamatergic microcircuits also act at the brain/body interface via the microbiome, kynurenine pathway, and hypothalamus-pituitary-adrenal axis. Disruption of excitatory/inhibitory homeostasis causing neuro-excitotoxicity, with neuronal impairment, causes depression and cognition symptoms via limbic and prefrontal regions, respectively. Persistent dysfunction reduces neuronal plasticity and growth causing neuronal death and tissue atrophy in neurodegenerative diseases. A conceptual overview of brain glutamatergic activity and peripheral interfacing is presented, including the common mechanisms that diverse diseases share when glutamate homeostasis is disrupted.
Collapse
Affiliation(s)
- Thomas McGrath
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| | - Richard Baskerville
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Correspondence:
| | - Marcelo Rogero
- School of Public Health, University of Sao Paulo, Sao Paulo 01246-904, Brazil;
| | - Linda Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| |
Collapse
|
9
|
Chen M, Chen G, Tian H, Dou G, Fang T, Cai Z, Cheng L, Chen S, Chen C, Ping J, Lin X, Chen C, Zhu J, Zhao F, Liu C, Yue W, Song X, Zhuo C. Brain Neural Activity Patterns in an Animal Model of Antidepressant-Induced Manic Episodes. Front Behav Neurosci 2022; 15:771975. [PMID: 35250499 PMCID: PMC8889145 DOI: 10.3389/fnbeh.2021.771975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: In the treatment of patients with bipolar disorder (BP), antidepressant-induced mania is usually observed. The rate of phase switching (from depressive to manic) in these patients exceeds 22%. The exploration of brain activity patterns during an antidepressant-induced manic phase may aid the development of strategies to reduce the phase-switching rate. The use of a murine model to explore brain activity patterns in depressive and manic phases can help us to understandthe pathological features of BP. The novel object recognition preference ratio is used to assess cognitive ability in such models. Objective: To investigate brain Ca2+ activity and behavioral expression in the depressive and manic phases in the same murine model, to aid understanding of brain activity patterns in phase switching in BP. Methods: In vivo two-photon imaging was used to observe brain activity alterations in a murine model in which induce depressive-like and manic-like behaviors were induced sequentially. The immobility time was used to assess depressive-like symptoms and the total distance traveled was used to assess manic-like symptoms. Results: In vivo two-photon imaging revealed significantly reduced brain Ca2+ activity in temporal cortex pyramidal neurons in the depressive phase in mice exposed to chronic unpredictable mild stress compared with naïve controls. The brain Ca2+ activity correlated negatively with the novel object recognition preference ratio within the immobility time. Significantly increased brain Ca2+ activity was observed in the ketamine-induced manic phase. However, this activity did not correlate with the total distance traveled. The novel object recognition preference ratio correlated negatively with the total distance traveled in the manic phase.
Collapse
Affiliation(s)
- Min Chen
- Micro-imaging Center of Psychiatric Disorder, Institute of Mental Health, Jining Medical University, Jining, China
| | - Guangdong Chen
- Center of Psychiatric Animal Model, Institute of Mental Health, Wenzhou Seventh Peoples Hospital, Wenzhou, China
- Department of Psychiatry Medical Center, Wenzhou Seventh Peoples Hospital, Wenzhou, China
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Hongjun Tian
- Key Laboratory of Real Time Tracing of Brain Circuits in Psychiatry and Neurology (RTBNP_Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Guangqian Dou
- Key Laboratory of Real Time Tracing of Brain Circuits in Psychiatry and Neurology (RTBNP_Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Tao Fang
- Key Laboratory of Real Time Tracing of Brain Circuits in Psychiatry and Neurology (RTBNP_Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Ziyao Cai
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Langlang Cheng
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Suling Chen
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Ce Chen
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Jing Ping
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Xiaodong Lin
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Chunmian Chen
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Jingjing Zhu
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Feifei Zhao
- Department of Clinical Laboratory, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Chuanxin Liu
- Micro-imaging Center of Psychiatric Disorder, Institute of Mental Health, Jining Medical University, Jining, China
| | - Weihua Yue
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- *Correspondence: Chuanjun Zhuo Weihua Yue Xueqin Song
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Chuanjun Zhuo Weihua Yue Xueqin Song
| | - Chuanjun Zhuo
- Key Laboratory of Real Time Tracing of Brain Circuits in Psychiatry and Neurology (RTBNP_Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Chuanjun Zhuo Weihua Yue Xueqin Song
| |
Collapse
|
10
|
Ketamine and Lamotrigine Combination in Psychopharmacology: Systematic Review. Cells 2022; 11:cells11040645. [PMID: 35203296 PMCID: PMC8869907 DOI: 10.3390/cells11040645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 01/05/2023] Open
Abstract
Background and Objectives: Ketamine is a rapid-acting antidepressant with proven efficacy as an add-on agent in unipolar and bipolar treatment-resistant depression. Although many studies have been published, there is still not enough data on the effect of ketamine in combination with other medications. Particularly interesting is the combination of ketamine and lamotrigine, and its potential role in bipolar depression. The aim of this review was to identify animal and human studies in which ketamine and lamotrigine were used together in order to find out if there is scientific ground for combining ketamine and lamotrigine in the treatment of mood disorders. Directions for future studies are presented. Materials and Methods: PubMed and Web of Science were searched. Preferred Reporting Items for Systematic Reviews and Meta-Analyses PRISMA 2020 methodology was applied. Results: Seventeen studies were included for review. Animal studies using models of depression suggested a synergistic effect of ketamine and lamotrigine in combination. Studies on healthy humans showed a reduction in ketamine-induced dissociative symptoms with lamotrigine pretreatment. In a study on patients with depression, ketamine and lamotrigine did not have a stronger antidepressant effect than ketamine alone, but in this study only one ketamine infusion was administered. One case series described the antidepressant and anti-suicidal effect of the combination in two bipolar patients. Available clinical studies on patients with mood disorders did not support the hypothesis that lamotrigine reduces ketamine-induced dissociative symptoms. Conclusions: The results of the analyzed studies were not sufficient to answer any of the stated questions; however, they allowed us to delineate future research directions. The identified animal studies suggested a possible synergistic antidepressant effect of ketamine and lamotrigine. The available clinical studies were not conclusive. No controlled studies on large groups of bipolar patients with multiple ketamine infusions combined with lamotrigine treatment have been published so far. There is some evidence for the reduction of ketamine’s side effects by lamotrigine, and there are reports suggesting that lamotrigine can reduce ketamine craving. More studies with follow-up are needed in order to investigate the ketamine–lamotrigine combination in bipolar patients.
Collapse
|
11
|
Hassan K, Struthers WM, Sankarabhotla A, Davis P. Safety, effectiveness and tolerability of sublingual ketamine in depression and anxiety: A retrospective study of off-label, at-home use. Front Psychiatry 2022; 13:992624. [PMID: 36245861 PMCID: PMC9554222 DOI: 10.3389/fpsyt.2022.992624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Intravenous and intranasal ketamine have been shown to be effective therapeutic options in patients suffering from treatment-resistant depression (TRD). The use of sublingual (SL), rapid dissolve ketamine tablets (RDT) offers a novel approach for delivery for mental health indications. This study assessed the effectiveness and safety of self-administration of off-label, SL, rapid dissolve ketamine tablets (RDT) at-home for depression and anxiety. Intake scores on the Generalized Anxiety Disorder Screener (GAD-7) and Patient Health Questionnaire (PHQ-9) were compared to scores after treatments of three doses of ketamine RDT, and after six doses of ketamine RDT. After three doses of SL ketamine, 47.6% of patients showed a significant decrease in PHQ-9 scores, and 47.6% of patients showed a significant reduction in GAD-7 scores. Reduction rates were higher in those patients who completed a clinically recommended six doses of RDT ketamine. This study demonstrates that SL ketamine is a novel, safe, and effective treatment for TRD and treatment-resistant anxiety. SL ketamine offers an alternative therapeutic approach to IV ketamine when treating those with TRD.
Collapse
|
12
|
López-Arnau R, Camarasa J, Carbó ML, Nadal-Gratacós N, Puigseslloses P, Espinosa-Velasco M, Urquizu E, Escubedo E, Pubill D. 3,4-Methylenedioxy methamphetamine, synthetic cathinones and psychedelics: From recreational to novel psychotherapeutic drugs. Front Psychiatry 2022; 13:990405. [PMID: 36262632 PMCID: PMC9574023 DOI: 10.3389/fpsyt.2022.990405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The utility of classical drugs used to treat psychiatric disorders (e.g., antidepressants, anxiolytics) is often limited by issues of lack of efficacy, delayed onset of action or side effects. Psychoactive substances have a long history of being used as tools to alter consciousness and as a gateway to approach the unknown and the divinities. These substances were initially obtained from plants and animals and more recently by chemical synthesis, and its consumption evolved toward a more recreational use, leading to drug abuse-related disorders, trafficking, and subsequent banning by the authorities. However, these substances, by modulation of certain neurochemical pathways, have been proven to have a beneficial effect on some psychiatric disorders. This evidence obtained under medically controlled conditions and often associated with psychotherapy, makes these substances an alternative to conventional medicines, to which in many cases the patient does not respond properly. Such disorders include post-traumatic stress disease and treatment-resistant depression, for which classical drugs such as MDMA, ketamine, psilocybin and LSD, among others, have already been clinically tested, reporting successful outcomes. The irruption of new psychoactive substances (NPS), especially during the last decade and despite their recreational and illicit uses, has enlarged the library of substances with potential utility on these disorders. In fact, many of them were synthetized with therapeutic purposes and were withdrawn for concrete reasons (e.g., adverse effects, improper pharmacological profile). In this review we focus on the basis, existing evidence and possible use of synthetic cathinones and psychedelics (specially tryptamines) for the treatment of mental illnesses and the properties that should be found in NPS to obtain new therapeutic compounds.
Collapse
Affiliation(s)
- Raúl López-Arnau
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Jordi Camarasa
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Marcel Lí Carbó
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Núria Nadal-Gratacós
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Pol Puigseslloses
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - María Espinosa-Velasco
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Edurne Urquizu
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Elena Escubedo
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - David Pubill
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
13
|
Dean RL, Hurducas C, Hawton K, Spyridi S, Cowen PJ, Hollingsworth S, Marquardt T, Barnes A, Smith R, McShane R, Turner EH, Cipriani A. Ketamine and other glutamate receptor modulators for depression in adults with unipolar major depressive disorder. Cochrane Database Syst Rev 2021; 9:CD011612. [PMID: 34510411 PMCID: PMC8434915 DOI: 10.1002/14651858.cd011612.pub3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Many studies have recently been conducted to assess the antidepressant efficacy of glutamate modification in mood disorders. This is an update of a review first published in 2015 focusing on the use of glutamate receptor modulators in unipolar depression. OBJECTIVES To assess the effects - and review the acceptability and tolerability - of ketamine and other glutamate receptor modulators in alleviating the acute symptoms of depression in people with unipolar major depressive disorder. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE, Embase and PsycINFO all years to July 2020. We did not apply any restrictions to date, language or publication status. SELECTION CRITERIA Double- or single-blinded randomised controlled trials (RCTs) comparing ketamine, memantine, esketamine or other glutamate receptor modulators with placebo (pill or saline infusion), other active psychotropic drugs, or electroconvulsive therapy (ECT) in adults with unipolar major depression. DATA COLLECTION AND ANALYSIS Three review authors independently identified studies, assessed trial quality and extracted data. The primary outcomes were response rate (50% reduction on a standardised rating scale) and adverse events. We decided a priori to measure the efficacy outcomes at different time points and run sensitivity/subgroup analyses. Risk of bias was assessed using the Cochrane tool, and certainty of the evidence was assessed using GRADE. MAIN RESULTS Thirty-one new studies were identified for inclusion in this updated review. Overall, we included 64 studies (5299 participants) on ketamine (31 trials), esketamine (9), memantine (5), lanicemine (4), D-cycloserine (2), Org26576 (2), riluzole (2), atomoxetine (1), basimglurant (1), citicoline (1), CP-101,606 (1), decoglurant (1), MK-0657 (1), N-acetylcysteine (1), rapastinel (1), and sarcosine (1). Forty-eight studies were placebo-controlled, and 48 were two-arm studies. The majority of trials defined an inclusion criterion for the severity of depressive symptoms at baseline: 29 at least moderate depression; 17 severe depression; and five mild-to-moderate depression. Nineteen studies recruited only patients with treatment-resistant depression, defined as inadequate response to at least two antidepressants. The majority of studies investigating ketamine administered as a single dose, whilst all of the included esketamine studies used a multiple dose regimen (most frequently twice a week for four weeks). Most studies looking at ketamine used intravenous administration, whilst the majority of esketamine trials used intranasal routes. The evidence suggests that ketamine may result in an increase in response and remission compared with placebo at 24 hours odds ratio (OR) 3.94, 95% confidence interval (CI) 1.54 to 10.10; n = 185, studies = 7, very low-certainty evidence). Ketamine may reduce depression rating scale scores over placebo at 24 hours, but the evidence is very uncertain (standardised mean difference (SMD) -0.87, 95% CI -1.26 to -0.48; n = 231, studies = 8, very low-certainty evidence). There was no difference in the number of participants assigned to ketamine or placebo who dropped out for any reason (OR 1.25, 95% CI 0.19 to 8.28; n = 201, studies = 6, very low-certainty evidence). When compared with midazolam, the evidence showed that ketamine increases remission rates at 24 hours (OR 2.21, 95% CI 0.67 to 7.32; n = 122,studies = 2, low-certainty evidence). The evidence is very uncertain about the response efficacy of ketamine at 24 hours in comparison with midazolam, and its ability to reduce depression rating scale scores at the same time point (OR 2.48, 95% CI 1.00 to 6.18; n = 296, studies = 4,very low-certainty evidence). There was no difference in the number of participants who dropped out of studies for any reason between ketamine and placebo (OR 0.33, 95% CI 0.05 to 2.09; n = 72, studies = 1, low-certainty evidence). Esketamine treatment likely results in a large increase in participants achieving remission at 24 hours compared with placebo (OR 2.74, 95% CI 1.71 to 4.40; n = 894, studies = 5, moderate-certainty evidence). Esketamine probably results in decreases in depression rating scale scores at 24 hours compared with placebo (SMD -0.31, 95% CI -0.45 to -0.17; n = 824, studies = 4, moderate-certainty evidence). Our findings show that esketamine increased response rates, although this evidence is uncertain (OR 2.11, 95% CI 1.20 to 3.68; n = 1071, studies = 5, low-certainty evidence). There was no evidence that participants assigned to esketamine treatment dropped out of trials more frequently than those assigned to placebo for any reason (OR 1.58, 95% CI 0.92 to 2.73; n = 773, studies = 4,moderate-certainty evidence). We found very little evidence for the remaining glutamate receptor modulators. We rated the risk of bias as low or unclear for most domains, though lack of detail regarding masking of treatment in the studies reduced our certainty in the effect for all outcomes. AUTHORS' CONCLUSIONS Our findings show that ketamine and esketamine may be more efficacious than placebo at 24 hours. How these findings translate into clinical practice, however, is not entirely clear. The evidence for use of the remaining glutamate receptor modulators is limited as very few trials were included in the meta-analyses for each comparison and the majority of comparisons included only one study. Long term non-inferiority RCTs comparing repeated ketamine and esketamine, and rigorous real-world monitoring are needed to establish comprehensive data on safety and efficacy.
Collapse
Affiliation(s)
| | | | - Keith Hawton
- Centre for Suicide Research, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Styliani Spyridi
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Cyprus University of Technology, Lemesos, Cyprus
| | - Philip J Cowen
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | | | | | | | - Rupert McShane
- Oxford Health NHS Foundation Trust, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Erick H Turner
- Portland Veterans Affairs Medical Center, P3MHDC, Portland, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA
| | - Andrea Cipriani
- Oxford Health NHS Foundation Trust, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|