1
|
Li Y, Hao W, Guan J, Li B, Meng L, Sun S, Sheng T, Dong S, Zhou Q, Liu M, Zhang Z, Shen T, Shen Y, Zhao B. Relationship between indices of circulating blood cells and bone homeostasis in osteoporosis. Front Endocrinol (Lausanne) 2022; 13:965290. [PMID: 36133307 PMCID: PMC9483170 DOI: 10.3389/fendo.2022.965290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Bone development have been shown to play an important role in regulating hematopoiesis as one major component of bone marrow microenvironment. Recent studies support the notion that there is an intricate relationship between hematopoiesis and bone homeostasis, however, little is known about the alterations in the hematopoietic lineages in pathologic conditions. Using various osteoporotic mouse models, we show here that bone microarchitecture abnormalities alter parameters of peripheral blood cells. The level of white blood cells is dynamics and negatively correlated with bone mineral density during the progression of osteoporosis. Furthermore, our clinical data confirm that osteoporosis is associated with abnormal circulating blood cell counts. These results demonstrated a causal link that osteoporosis is accompanied by the altered circulating blood cells, supporting the idea of a close interplay between hematopoiesis and bone homeostasis. Our study would propose that routine complete blood count might be applied as a potential diagnostic and putative marker for osteoporosis.
Collapse
Affiliation(s)
- Yuan Li
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- National Medical Products Administration (NMPA) Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Baobing Zhao, ; Yuan Li,
| | - Weimin Hao
- Department of Spine Surgery, Heze Municipal Hospital, Heze, Shandong, China
| | - Jianming Guan
- Department of Hematology, Heze Municipal Hospital, Heze, Shandong, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li Meng
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuangjiao Sun
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianyuan Sheng
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuangxi Dong
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Zhou
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingjie Liu
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongkai Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tao Shen
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Medical Products Administration (NMPA) Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuemao Shen
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Medical Products Administration (NMPA) Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baobing Zhao
- Key Lab of Chemical Biology, Ministry of Education (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Medical Products Administration (NMPA) Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Baobing Zhao, ; Yuan Li,
| |
Collapse
|
2
|
Hara T, Hijikata Y, Matsubara Y, Watanabe N. Pharmacological interventions versus placebo, no treatment or usual care for osteoporosis in people with chronic kidney disease stages 3-5D. Cochrane Database Syst Rev 2021; 7:CD013424. [PMID: 34231877 PMCID: PMC8262129 DOI: 10.1002/14651858.cd013424.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is an independent risk factor for osteoporosis and is more prevalent among people with CKD than among people who do not have CKD. Although several drugs have been used to effectively treat osteoporosis in the general population, it is unclear whether they are also effective and safe for people with CKD, who have altered systemic mineral and bone metabolism. OBJECTIVES To assess the efficacy and safety of pharmacological interventions for osteoporosis in patients with CKD stages 3-5, and those undergoing dialysis (5D). SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 25 January 2021 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA Randomised controlled trials comparing any anti-osteoporotic drugs with a placebo, no treatment or usual care in patients with osteoporosis and CKD stages 3 to 5D were included. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies, assessed their quality using the risk of bias tool, and extracted data. The main outcomes were the incidence of fracture at any sites; mean change in the bone mineral density (BMD; measured using dual-energy radiographic absorptiometry (DXA)) of the femoral neck, total hip, lumbar spine, and distal radius; death from all causes; incidence of adverse events; and quality of life (QoL). Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes, and mean difference (MD) for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS Seven studies involving 9164 randomised participants with osteoporosis and CKD stages 3 to 5D met the inclusion criteria; all participants were postmenopausal women. Five studies included patients with CKD stages 3-4, and two studies included patients with CKD stages 5 or 5D. Five pharmacological interventions were identified (abaloparatide, alendronate, denosumab, raloxifene, and teriparatide). All studies were judged to be at an overall high risk of bias. Among patients with CKD stages 3-4, anti-osteoporotic drugs may reduce the risk of vertebral fracture (RR 0.52, 95% CI 0.39 to 0.69; low certainty evidence). Anti-osteoporotic drugs probably makes little or no difference to the risk of clinical fracture (RR 0.91, 95% CI 0.79 to 1.05; moderate certainty evidence) and adverse events (RR 0.99, 95% CI 0.98 to 1.00; moderate certainty evidence). We were unable to incorporate studies into the meta-analyses for BMD at the femoral neck, lumbar spine and total hip as they only reported the percentage change in the BMD in the intervention group. Among patients with severe CKD stages 5 or 5D, it is uncertain whether anti-osteoporotic drug reduces the risk of clinical fracture (RR 0.33, 95% CI 0.01 to 7.87; very low certainty evidence). It is uncertain whether anti-osteoporotic drug improves the BMD at the femoral neck because the certainty of this evidence is very low (MD 0.01, 95% CI 0.00 to 0.02). Anti-osteoporotic drug may slightly improve the BMD at the lumbar spine (MD 0.03, 95% CI 0.03 to 0.04, low certainty evidence). No adverse events were reported in the included studies. It is uncertain whether anti-osteoporotic drug reduces the risk of death (RR 1.00, 95% CI 0.22 to 4.56; very low certainty evidence). AUTHORS' CONCLUSIONS Among patients with CKD stages 3-4, anti-osteoporotic drugs may reduce the risk of vertebral fracture in low certainty evidence. Anti-osteoporotic drugs make little or no difference to the risk of clinical fracture and adverse events in moderate certainty evidence. Among patients with CKD stages 5 and 5D, it is uncertain whether anti-osteoporotic drug reduces the risk of clinical fracture and death because the certainty of this evidence is very low. Anti-osteoporotic drug may slightly improve the BMD at the lumbar spine in low certainty evidence. It is uncertain whether anti-osteoporotic drug improves the BMD at the femoral neck because the certainty of this evidence is very low. Larger studies including men, paediatric patients or individuals with unstable CKD-mineral and bone disorder are required to assess the effect of each anti-osteoporotic drug at each stage of CKD.
Collapse
Affiliation(s)
- Takashi Hara
- Department of Healthcare Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan
| | - Yasukazu Hijikata
- Department of Healthcare Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan
| | - Yukiko Matsubara
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Norio Watanabe
- Department of Psychiatry, Soseikai General Hospital, Kyoto, Japan
| |
Collapse
|
3
|
Bover J, Ureña-Torres P, Cozzolino M, Rodríguez-García M, Gómez-Alonso C. The Non-invasive Diagnosis of Bone Disorders in CKD. Calcif Tissue Int 2021; 108:512-527. [PMID: 33398414 DOI: 10.1007/s00223-020-00781-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Abnormal bone metabolism is an integral part of the chronic kidney disease-mineral bone disorder (CKD-MBD). For several reasons, the difficult bone compartment was neglected for some time, but there has been renewed interest as a result of the conception of bone as a new endocrine organ, the increasing recognition of the cross-talk between bone and vessels, and, especially, the very high risk of osteoporotic fractures (and associated mortality) demonstrated in patients with CKD. Therefore, it has been acknowledged in different guidelines that action is needed in respect of fracture risk assessment and the diagnosis and treatment of osteoporosis in the context of CKD and CKD-MBD, even beyond renal osteodystrophy. These updated guidelines clearly underline the need to improve a non-invasive approach to these bone disorders in order to guide treatment decisions aimed at not only controlling CKD-MBD but also decreasing the risk of fracture. In this report, we review the current role of the most often clinically used or promising biochemical circulating biomarkers such as parathyroid hormone, alkaline phosphatases, and other biochemical markers of bone activity as alternatives to some aspects of bone histomorphometry. We also mention the potential role of classic and new imaging techniques for CKD patients. Information on many aspects is still scarce and heterogeneous, but many of us consider that it is indeed time for action, recognizing our definitely limited ability to base certain treatment decisions only on our current non-comprehensive knowledge.
Collapse
Affiliation(s)
- Jordi Bover
- Department of Nephrology, Fundació Puigvert and Universitat Autònoma, IIB Sant Pau, REDinREN, C. Cartagena 340-350, 08025, Barcelona, Catalonia, Spain.
| | - Pablo Ureña-Torres
- Department of Dialysis, AURA Nord Saint Ouen and Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France
| | - Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Minerva Rodríguez-García
- Unidad de Gestión Clínica de Nefrología, Hospital Universitario Central de Asturias, REDinREN, Universidad de Oviedo, Oviedo, Spain
| | - Carlos Gómez-Alonso
- Unidad de Gestión Clínica de Metabolismo Óseo y Mineral, Instituto de Investigación Sanitaria del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|