1
|
Yamaguchi M, Cotterill S. Association of Mutations in Replicative DNA Polymerase Genes with Human Disease: Possible Application of Drosophila Models for Studies. Int J Mol Sci 2023; 24:ijms24098078. [PMID: 37175782 PMCID: PMC10178534 DOI: 10.3390/ijms24098078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Replicative DNA polymerases, such as DNA polymerase α-primase, δ and ε, are multi-subunit complexes that are responsible for the bulk of nuclear DNA replication during the S phase. Over the last decade, extensive genome-wide association studies and expression profiling studies of the replicative DNA polymerase genes in human patients have revealed a link between the replicative DNA polymerase genes and various human diseases and disorders including cancer, intellectual disability, microcephalic primordial dwarfism and immunodeficiency. These studies suggest the importance of dissecting the mechanisms involved in the functioning of replicative DNA polymerases in understanding and treating a range of human diseases. Previous studies in Drosophila have established this organism as a useful model to understand a variety of human diseases. Here, we review the studies on Drosophila that explored the link between DNA polymerases and human disease. First, we summarize the recent studies linking replicative DNA polymerases to various human diseases and disorders. We then review studies on replicative DNA polymerases in Drosophila. Finally, we suggest the possible use of Drosophila models to study human diseases and disorders associated with replicative DNA polymerases.
Collapse
Affiliation(s)
| | - Sue Cotterill
- Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK
| |
Collapse
|
2
|
Raducanu VS, Tehseen M, Al-Amodi A, Joudeh LI, De Biasio A, Hamdan SM. Mechanistic investigation of human maturation of Okazaki fragments reveals slow kinetics. Nat Commun 2022; 13:6973. [PMID: 36379932 PMCID: PMC9666535 DOI: 10.1038/s41467-022-34751-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The final steps of lagging strand synthesis induce maturation of Okazaki fragments via removal of the RNA primers and ligation. Iterative cycles between Polymerase δ (Polδ) and Flap endonuclease-1 (FEN1) remove the primer, with an intermediary nick structure generated for each cycle. Here, we show that human Polδ is inefficient in releasing the nick product from FEN1, resulting in non-processive and remarkably slow RNA removal. Ligase 1 (Lig1) can release the nick from FEN1 and actively drive the reaction toward ligation. These mechanisms are coordinated by PCNA, which encircles DNA, and dynamically recruits Polδ, FEN1, and Lig1 to compete for their substrates. Our findings call for investigating additional pathways that may accelerate RNA removal in human cells, such as RNA pre-removal by RNase Hs, which, as demonstrated herein, enhances the maturation rate ~10-fold. They also suggest that FEN1 may attenuate the various activities of Polδ during DNA repair and recombination.
Collapse
Affiliation(s)
- Vlad-Stefan Raducanu
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Muhammad Tehseen
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Amani Al-Amodi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Luay I Joudeh
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Alfredo De Biasio
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Samir M Hamdan
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
3
|
Jiao S, Zhang X, Wang D, Fu H, Xia Q. Genetic Alteration and Their Significance on Clinical Events in Small Cell Lung Cancer. Cancer Manag Res 2022; 14:1493-1505. [PMID: 35469134 PMCID: PMC9034895 DOI: 10.2147/cmar.s356037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Small cell lung cancer (SCLC), an aggressive subtype of lung cancer characterized by the development of neuroendocrine tumors, is prone to distant metastasis, resistant to platinum-based drugs and has a poor prognosis. The development of next-generation sequencing technology (NGS) has led to the identification of many genetic alterations in SCLC. Few druggable targeted molecules can be used in clinical practice. Currently, NGS is widely employed in routine clinical practice of non-small cell lung cancer to assist in therapeutic options and prognosis evaluation. This study aims to investigate genes involved in small cell lung cancer (SCLC), their occurrence and their significance in clinical events. Methods Tumor tissue specimens from 18 Chinese SCLC patients were collected through a 520 cancer‐related genes panel for next-generation sequencing. First, the association between sequence results and clinical outcomes was examined. Subsequently, data on clinical pathology and sequencing results were analyzed. Results The Kaplan–Meier curve displayed a significant reduction in PFS for SCLC patients with LRP1B or MAP3K13 mutations. Overall survival (OS) of SCLC patients with MSH6 mutation was significantly higher than those with SPEN mutation. Conclusion Next-generation sequencing demonstrates that the genetic landscape of SCLC. Mutation status of LRP1B, MAP3K13, MSH6 and SPEN has prognostic significance, which might be potential therapeutic targets. We found possible genes and related signaling pathways that affect metastasis. These results can improve our understanding of the mutation characteristics of SCLC and identify potential biomarkers to guide targeted therapies.
Collapse
Affiliation(s)
- Shuyue Jiao
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xin Zhang
- Department of Pathology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Dapeng Wang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou, People’s Republic of China
| | - Hongyong Fu
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou, People’s Republic of China
| | - Qingxin Xia
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou, People’s Republic of China
- Correspondence: Qingxin Xia; Hongyong Fu, Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou, 450000, People’s Republic of China, Email ;
| |
Collapse
|
4
|
Pećina-Šlaus N, Kafka A, Salamon I, Bukovac A. Mismatch Repair Pathway, Genome Stability and Cancer. Front Mol Biosci 2020; 7:122. [PMID: 32671096 PMCID: PMC7332687 DOI: 10.3389/fmolb.2020.00122] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/25/2020] [Indexed: 01/02/2023] Open
Abstract
The acquisition of genomic instability is one of the key characteristics of the cancer cell, and microsatellite instability (MSI) is an important segment of this phenomenon. This review aims to describe the mismatch DNA repair (MMR) system whose deficiency is responsible for MSI and discuss the cellular roles of MMR genes. Malfunctioning of the MMR repair pathway increases the mutational burden of specific cancers and is often involved in its etiology, sometimes as an influential bystander and sometimes as the main driving force. Detecting the presence of MSI has for a long time been an important part of clinical diagnostics, but has still not achieved its full potential. The MSI blueprints of specific tumors are useful for precize grading, evaluation of cancer chance and prognosis and to help us understand how and why therapy-resistant cancers arise. Furthermore, evidence indicates that MSI is an important predictive biomarker for the application of immunotherapy.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Iva Salamon
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Anja Bukovac
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
The molecular biology of prostate cancer: current understanding and clinical implications. Prostate Cancer Prostatic Dis 2017; 21:22-36. [PMID: 29282359 DOI: 10.1038/s41391-017-0023-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND With continuous progress over the past few decades in understanding diagnosis, treatment, and genetics, much has been learned about the prostate cancer-diagnosed genome. METHODS A comprehensive MEDLINE® and Google scholar literature search was conducted using keyword variations relating to the genetics of prostate cancer such as chromosomal alterations, androgen receptor, castration-resistant, inheritance, polymorphisms, oncogenes, metastasis, biomarkers, and immunotherapy. RESULTS Traditionally, androgen receptors (AR) have been the focus of research. Recently, identification of recurrent chromosomal alterations that lead to either multiplication of regions (gain-of-function) or deletion of regions (loss-of-function) has opened the door to greater genetic accessibility. These chromosomal aberrations lead to variation in copy number and gene expression. Some of these chromosomal alterations are inherited, while others undergo somatic mutations during disease progression. Inherited gene mutations that make one susceptible to prostate cancer have been identified with familial-linked studies. Somatic genes that progress tumorigenesis have also been identified. Research on the molecular biology of prostate cancer has characterized these genes into tumor suppressor genes or oncogenes. Additionally, genome-wide assay studies have identified many high-risk single-nucleotide polymorphisms recurrent throughout the prostate cancer-diagnosed genome. Castration-resistant prostate cancer is the most aggressive form of prostate cancer, and its research has elucidated many types of mutations associated with AR itself, including enhanced expression and amplification, point mutations, and alternative splicing. Understanding the molecular biology of prostate cancer has permitted more accurate identification using advanced biomarkers and therapy for aggressive forms using immunotherapy. CONCLUSIONS An age-related disease, prostate cancer commands profound attention. With increasing life expectancy and the continuous pursuit of it, prostate cancer is a powerful obstacle best defeated using targeted therapies specifically designed for the unique molecular profile of the malignancy.
Collapse
|
6
|
Pećina-Šlaus N, Kafka A, Bukovac A, Vladušić T, Tomas D, Hrašćan R. Genetic changes of MLH1 and MSH2 genes could explain constant findings on microsatellite instability in intracranial meningioma. Tumour Biol 2017; 39:1010428317705791. [PMID: 28705114 DOI: 10.1177/1010428317705791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Postreplicative mismatch repair safeguards the stability of our genome. The defects in its functioning will give rise to microsatellite instability. In this study, 50 meningiomas were investigated for microsatellite instability. Two major mismatch repair genes, MLH1 and MSH2, were analyzed using microsatellite markers D1S1611 and BAT26 amplified by polymerase chain reaction and visualized by gel electrophoresis on high-resolution gels. Furthermore, genes DVL3 (D3S1262), AXIN1 (D16S3399), and CDH1 (D16S752) were also investigated for microsatellite instability. Our study revealed constant presence of microsatellite instability in meningioma patients when compared to their autologous blood DNA. Altogether 38% of meningiomas showed microsatellite instability at one microsatellite locus, 16% on two, and 13.3% on three loci. The percent of detected microsatellite instability for MSH2 gene was 14%, and for MLH1, it was 26%, for DVL3 22.9%, for AXIN1 17.8%, and for CDH1 8.3%. Since markers also allowed for the detection of loss of heterozygosity, gross deletions of MLH1 gene were found in 24% of meningiomas. Genetic changes between MLH1 and MSH2 were significantly positively correlated (p = 0.032). We also noted a positive correlation between genetic changes of MSH2 and DVL3 genes (p = 0.034). No significant associations were observed when MLH1 or MSH2 was tested against specific histopathological meningioma subtype or World Health Organization grade. However, genetic changes in DVL3 were strongly associated with anaplastic histology of meningioma (χ2 = 9.14; p = 0.01). Our study contributes to better understanding of the genetic profile of human intracranial meningiomas and suggests that meningiomas harbor defective cellular DNA mismatch repair mechanisms.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- 1 Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,2 Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Kafka
- 1 Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,2 Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Bukovac
- 1 Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,2 Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tomislav Vladušić
- 3 Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Davor Tomas
- 4 Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia.,5 University Hospital "Sisters of Charity," Zagreb, Croatia
| | - Reno Hrašćan
- 3 Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|