1
|
Chen W, Xie H, Xiao M, Li M, Tang Y, Zhang S, Li X, Wang Y. High Norepinephrine State Induces Growth of Colorectal Cancer Cells via ADP-Ribosyltransferase 1 in Type 2 Diabetes Mellitus. FRONT BIOSCI-LANDMRK 2023; 28:295. [PMID: 38062812 DOI: 10.31083/j.fbl2811295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/28/2023] [Accepted: 06/15/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Patients with type 2 diabetes mellitus have a higher susceptibility for colorectal cancer and poorer prognosis, but the mechanism is still unknown. Here, we investigated the effect of ADP-ribosyltransferase 1 (ART1) on the growth of colorectal cancer in an animal model of diabetes with high norepinephrine status, as well as the potential mechanism. METHODS We evaluated the size and weight of transplanted CT26 cell tumors with different ART1 expression levels in a mouse model of diabetes, as well as the survival time. CCK8 and flow cytometry were used to evaluate the growth of CT26 cells in vitro. Western blot was performed to analyze differentially expressed proteins in the ART1-modulated pathway. RESULTS High levels of norepinephrine and ART1 favored the proliferation of CT26 cells in vitro and in vivo. Moreover, inhibition of norepinephrine-dependent proliferation was observed in ART1-silenced CT26 cells compared to those with normal ART1 expression. Following reduction of the serum norepinephrine level by surgery, the size and weight of transplanted CT26 cell tumors was significantly reduced compared to non-operated and sham-operated mice. Furthermore, the expression of ART1, mTOR, STAT3, and p-AKT protein in the tumor tissue of diabetic mice was higher than in non-diabetic mice. Following reduction of the norepinephrine level by renal denervation (RD), expression of the proliferation-related proteins mTOR, STAT3, p-AKT protein decreased, but no change was seen for ART1 expression. At the same concentration of norepinephrine, ART1 induced the expression of p-AKT, mTOR, STAT3, CyclinD1 and c-myc in CT26 cells in vitro. CONCLUSIONS We conclude that faster growth of colorectal cancer in high norepinephrine conditions requires the expression of ART1, and that high ART1 expression may be a novel target for the treatment of diabetes-associated colorectal cancer.
Collapse
Affiliation(s)
- Wenwen Chen
- Department of Pathology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Hailun Xie
- Department of Pathology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Ming Xiao
- Department of Pathology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Ming Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Shuxian Zhang
- Department of Pathology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Xiujun Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Yalan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, 400016 Chongqing, China
| |
Collapse
|
2
|
Liang X, Qi Y, Dai F, Gu J, Yao W. PVAT: an important guardian of the cardiovascular system. Histol Histopathol 2020; 35:779-787. [PMID: 32080826 DOI: 10.14670/hh-18-211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Perivascular adipose tissue (PVAT) had long been considered to serve only structural, vessel-supporting purposes, but today PVAT is recognized to be an endocrine organ with important physiological and pathological effects. The expansion of PVAT in vascular homeostasis and vascular disease has attracted much interest. PVAT has been shown to release a wide spectrum of molecules, such as PVAT-derived relaxing factors (PVATRFs) and PVAT-derived contracting factors (PVATCFs). PVAT dysfunction may lead to obesity, atherosclerosis, and other cardiovascular diseases. This review describes recent advances in our understanding of PVAT's important effects on the cardiovascular system.
Collapse
Affiliation(s)
- Xiuying Liang
- School of Pharmacy, Nantong University, Nantong, China
| | - Yan Qi
- School of Pharmacy, Nantong University, Nantong, China
| | - Fan Dai
- School of Pharmacy, Nantong University, Nantong, China
| | - Jingya Gu
- School of Pharmacy, Nantong University, Nantong, China
| | - Wenjuan Yao
- School of Pharmacy, Nantong University, Nantong, China.
| |
Collapse
|
3
|
Osikoya O, Ahmed H, Panahi S, Bourque SL, Goulopoulou S. Uterine perivascular adipose tissue is a novel mediator of uterine artery blood flow and reactivity in rat pregnancy. J Physiol 2019; 597:3833-3852. [PMID: 31165480 DOI: 10.1113/jp277643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS In vivo, uterine perivascular adipose tissue (PVAT) potentiates uterine artery blood flow in pregnant rats, although not in non-pregnant rats. In isolated preparations, uterine PVAT has pro-contractile and anti-dilatory effects on uterine arteries. Pregnancy induces changes in uterine arteries that makes them responsive to uterine PVAT signalling. ABSTRACT An increase in uterine artery blood flow (UtBF) is a common and necessary feature of a healthy pregnancy. In the present study, we tested the hypothesis that adipose tissue surrounding uterine arteries (uterine perivascular adipose tissue; PVAT) is a novel local mediator of UtBF and uterine artery tone during pregnancy. In vivo experiments in anaesthetized Sprague-Dawley rats showed that pregnant animals (gestational day 16, term = 22--23 days) had a three-fold higher UtBF compared to non-pregnant animals. Surgical removal of uterine PVAT reduced UtBF only in pregnant rats. In a series of ex vivo bioassays, we demonstrated that uterine PVAT had pro-contractile and anti-dilatory effects on rat uterine arteries. In the presence of PVAT-conditioned media, isolated uterine arteries from both pregnant and non-pregnant rats had reduced vasodilatory responses. In non-pregnant rats, these responses were mediated at the level of uterine vascular smooth muscle, whereas, in pregnant rats, PVAT-media reduced endothelium-dependent relaxation. Pregnancy increased adipocyte size in ovarian adipose tissue but had no effect on uterine PVAT adipocyte morphology. In addition, pregnancy down-regulated the gene expression of metabolic adipokines in uterine but not in aortic PVAT. In conclusion, this is the first study to demonstrate that uterine PVAT plays a regulatory role in UtBF, at least in part, as a result of its actions on uterine artery tone. We propose that the interaction between the uterine vascular wall and its adjacent adipose tissue may provide new insights for interventions in pregnancies with adipose tissue dysfunction and abnormal UtBF.
Collapse
Affiliation(s)
- Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hijab Ahmed
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sareh Panahi
- Departments of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Stephane L Bourque
- Departments of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
4
|
Ahmad MF, Ferland D, Ayala-Lopez N, Contreras GA, Darios E, Thompson J, Ismail A, Thelen K, Moeser AJ, Burnett R, Anantharam A, Watts SW. Perivascular Adipocytes Store Norepinephrine by Vesicular Transport. Arterioscler Thromb Vasc Biol 2019; 39:188-199. [PMID: 30567483 PMCID: PMC6344267 DOI: 10.1161/atvbaha.118.311720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/03/2018] [Indexed: 01/08/2023]
Abstract
Objective- Perivascular adipose tissue (PVAT) contains an independent adrenergic system that can take up, metabolize, release, and potentially synthesize the vasoactive catecholamine norepinephrine. Norepinephrine has been detected in PVAT, but the mechanism of its protection within this tissue is unknown. Here, we investigate whether PVAT adipocytes can store norepinephrine using VMAT (vesicular monoamine transporter). Approach and Results- High-performance liquid chromatography identified norepinephrine in normal male Sprague Dawley rat aortic, superior mesenteric artery, and mesenteric resistance vessel PVATs, and retroperitoneal fat. Real-time polymerase chain reaction revealed VMAT1 and VMAT2 mRNA expression in the adipocytes and stromal vascular fraction of mesenteric resistance vessel PVAT. Immunofluorescence demonstrated the presence of VMAT1 and VMAT2, and the colocalization of VMAT2 with norepinephrine, in the cytoplasm of adipocytes in mesenteric resistance vessel PVAT. A protocol was developed to capture real-time uptake of Mini 202-a functional and fluorescent VMAT probe-in live rat PVAT adipocytes. Mini 202 was taken up by freshly isolated and differentiated adipocytes from mesenteric resistance vessel PVAT and adipocytes from thoracic aortic and superior mesenteric artery PVATs. In adipocytes freshly isolated from mesenteric resistance vessel PVAT, addition of rose bengal (VMAT inhibitor), nisoxetine (norepinephrine transporter inhibitor), or corticosterone (organic cation 3 transporter inhibitor) significantly reduced Mini 202 signal. Immunofluorescence supports that neither VMAT1 nor VMAT2 is present in retroperitoneal adipocytes, suggesting that PVAT adipocytes may be unique in storing norepinephrine. Conclusions- This study supports a novel function of PVAT adipocytes in storing amines in a VMAT-dependent manner. It provides a foundation for future studies exploring the purpose and mechanisms of norepinephrine storage by PVAT in normal physiology and obesity-related hypertension.
Collapse
Affiliation(s)
- Maleeha F Ahmad
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - David Ferland
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - Nadia Ayala-Lopez
- Department of Laboratory Medicine, Yale University, New Haven, CT (N.A.-L.)
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences (G.A.C., K.T., A.J.M.), Michigan State University, East Lansing
| | - Emma Darios
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - Janice Thompson
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - Alexander Ismail
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - Kyan Thelen
- Department of Large Animal Clinical Sciences (G.A.C., K.T., A.J.M.), Michigan State University, East Lansing
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences (G.A.C., K.T., A.J.M.), Michigan State University, East Lansing
| | - Robert Burnett
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| | - Arun Anantharam
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor (A.A.)
| | - Stephanie W Watts
- From the Department of Pharmacology and Toxicology (M.F.A., D.F., E.D., J.T., A.I., R.B., S.W.W.), Michigan State University, East Lansing
| |
Collapse
|
5
|
Thelen K, Watts SW, Contreras GA. Adipogenic potential of perivascular adipose tissue preadipocytes is improved by coculture with primary adipocytes. Cytotechnology 2018; 70:1435-1445. [PMID: 30051281 PMCID: PMC6214855 DOI: 10.1007/s10616-018-0238-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
Perivascular adipose tissue (PVAT) has the capacity to secrete vasoactive mediators with the potential to regulate vascular function. Given its location adjacent to the vasculature, PVAT dysfunction may be part of the pathophysiology of cardiovascular diseases. To study the mechanisms of PVAT dysfunction, several adipogenic models have been proposed. However, these approaches do not adequately reflect PVAT adipocyte phenotypes variability that depends on their anatomical location. Despite PVAT importance in modulating vascular function, to date, there is not a depot-specific adipogenic model for PVAT adipocytes. We present a model that uses coculturing of PVAT stromal vascular fraction derived preadipocytes with primary adipocytes isolated from the same PVAT. Preadipocytes were isolated from thoracic aorta PVAT and mesenteric resistance artery PVAT (mPVAT). Upon confluency, cells were induced to differentiate for 7 and 14 days using a standard protocol (SP) or standard protocol cocultured with primary adipocytes isolated from the same adipose depots (SPA) for 96, 120, and 144 h. SPA reduced the time for differentiation of stromal vascular fraction derived preadipocytes and increased their capacity to store lipids compared with SP as indicated by lipid accumulation, lipolytic responses, gene marker profile expression, and adiponectin secretion. The coculture system improved adipogenesis efficiency by enhancing lipid accumulation and reducing the time of induction, therefore, is a more efficient method compared to SP alone.
Collapse
Affiliation(s)
- Kyan Thelen
- Department of Large Animal Clinical Sciences, Michigan State University, 736 Wilson Road, Room D202, East Lansing, MI, 48824, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, 736 Wilson Road, Room D202, East Lansing, MI, 48824, USA.
| |
Collapse
|