1
|
Shaibullah S, Shuhaimi N, Ker DS, Mohd-Sharif N, Ho KL, Teh AH, Waterman J, Tang TH, Wong RR, Nathan S, Mohamed R, Ng MJ, Fung SY, Jonet MA, Firdaus-Raih M, Ng CL. Structural and functional analyses of Burkholderia pseudomallei BPSL1038 reveal a Cas-2/VapD nuclease sub-family. Commun Biol 2023; 6:920. [PMID: 37684342 PMCID: PMC10491678 DOI: 10.1038/s42003-023-05265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Burkholderia pseudomallei is a highly versatile pathogen with ~25% of its genome annotated to encode hypothetical proteins. One such hypothetical protein, BPSL1038, is conserved across seven bacterial genera and 654 Burkholderia spp. Here, we present a 1.55 Å resolution crystal structure of BPSL1038. The overall structure folded into a modified βαββαβα ferredoxin fold similar to known Cas2 nucleases. The Cas2 equivalent catalytic aspartate (D11) pairs are conserved in BPSL1038 although B. pseudomallei has no known CRISPR associated system. Functional analysis revealed that BPSL1038 is a nuclease with endonuclease activity towards double-stranded DNA. The DNase activity is divalent ion independent and optimum at pH 6. The concentration of monovalent ions (Na+ and K+) is crucial for nuclease activity. An active site with a unique D11(X20)SST motif was identified and proposed for BPSL1038 and its orthologs. Structure modelling indicates the catalytic role of the D11(X20)SST motif and that the arginine residues R10 and R30 may interact with the nucleic acid backbone. The structural similarity of BPSL1038 to Cas2 proteins suggests that BPSL1038 may represent a sub-family of nucleases that share a common ancestor with Cas2.
Collapse
Affiliation(s)
- Sofiyah Shaibullah
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
| | - Nurshahirah Shuhaimi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
| | - De-Sheng Ker
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Nurhikmah Mohd-Sharif
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900, Penang, Malaysia
| | - Jitka Waterman
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Thean-Hock Tang
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Rui-Rui Wong
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
- Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana, BBN, Nilai, 71800, Negeri Sembilan, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
| | - Rahmah Mohamed
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
| | - Min Jia Ng
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shin-Yee Fung
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia (NIBM), Jalan Bangi, Kajang, 43000, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
2
|
Faure G, Makarova KS, Koonin EV. CRISPR-Cas: Complex Functional Networks and Multiple Roles beyond Adaptive Immunity. J Mol Biol 2018; 431:3-20. [PMID: 30193985 DOI: 10.1016/j.jmb.2018.08.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/26/2023]
Abstract
CRISPR-Cas is a prokaryotic adaptive immune system that functions by incorporating fragments of foreign DNA into CRISPR arrays. The arrays containing spacers derived from foreign DNA are transcribed, and the transcripts are processed to generate spacer-containing mature CRISPR-RNAs that are employed as guides to specifically recognize and cleave the DNA or RNA of the cognate parasitic genetic elements. The CRISPR-Cas systems show remarkable complexity and diversity of molecular organization and appear to be involved in various cellular functions that are distinct from, even if connected to, adaptive immunity. In this review, we discuss some of such functional links of CRISPR-Cas systems including their effect on horizontal gene transfer that can be either inhibitory or stimulatory, connections between CRISPR-Cas and DNA repair systems as well as programmed cell death and signal transduction mechanisms, and potential role of CRISPR-Cas in transposon integration and plasmid maintenance. The interplay between the primary function of CRISPR-Cas as an adaptive immunity mechanism and these other roles defines the richness of the biological effects of these systems and affects their spread among bacteria and archaea.
Collapse
Affiliation(s)
- Guilhem Faure
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|