1
|
Moghbeli M. MicroRNAs as the critical regulators of bone metastasis during prostate tumor progression. Int J Biol Macromol 2025; 309:142912. [PMID: 40203904 DOI: 10.1016/j.ijbiomac.2025.142912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Prostate cancer (PCa) is the most prevalent cancer among men globally. Although, there are various therapeutic methods for the localized or advanced cancers, there is still a high rate of mortality among PCa patients that is mainly associated with bone metastasis in advanced tumors. There are few options available for treating bone metastasis in PCa, which only provide symptom relief without curing the disease. Therefore, it is crucial to evaluate the molecular mechanisms associated with bone metastasis of PCa cells to suggest the novel diagnostic and therapeutic approaches that could lower the morbidity and mortality rates in PCa patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological processes such as tumor growth and osteoblasts/osteoclasts formation. Since, miRNA deregulation has been also frequently observed in PCa patients with bone metastasis, we discussed the role of miRNAs in bone metastasis during PCa progression. It has been reported that miRNAs mainly reduced the ability of PCa tumor cells for the bone metastasis through the regulation of WNT, NF-kB, PI3K/AKT, and TGF-β signaling pathways. They also affected the EMT process, transcription factors, and structural proteins to regulate the bone metastasis during PCa progression. This review paves the way to suggest the miRNAs as the reliable markers not only for the non-invasive early diagnosis, but also for the targeted therapy of PCa tumors with bone metastasis.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Wu X, Wu J, Dai T, Wang Q, Cai S, Wei X, Chen J, Jiang Z. β-elemene promotes miR-127-3p maturation, induces NSCLCs autophagy, and enhances macrophage M1 polarization through exosomal communication. J Pharm Anal 2024; 14:100961. [PMID: 39315123 PMCID: PMC11417547 DOI: 10.1016/j.jpha.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/29/2024] [Accepted: 03/06/2024] [Indexed: 09/25/2024] Open
Abstract
β-elemene has been observed to exert inhibitory effects on a multitude of tumors, primarily through multiple pathways such as the inhibition of cancer cell proliferation and the induction of apoptosis. The present study is designed to elucidate the role and underlying mechanisms of β-elemene in the therapeutic intervention of non-small cell lung cancer (NSCLC). Both in vitro and in vivo experimental models corroborate the inhibitory potency of β-elemene on NSCLCs. Our findings indicate that β-elemene facilitates the maturation of miR-127-3p by inhibiting CBX8. Functioning as an upstream regulator of MAPK4, miR-127-3p deactivates the Akt/mTOR/p70S6K pathway by targeting MAPK4, thereby inducing autophagy in NSCLCs. Additionally, β-elemene augments the packaging of miR-127-3p into exosomes via SYNCRIP. Exosomal miR-127-3p further stimulates M1 polarization of macrophages by suppressing ZC3H4. Taken together, the detailed understanding of the mechanisms through which β-elemene induces autophagy in NSCLCs and facilitates M1 polarization of macrophages provides compelling scientific evidence supporting its potential utility in NSCLC treatment.
Collapse
Affiliation(s)
- Xiahui Wu
- Department of Oncology, Lianyungang Integrated Traditional Chinese and Western Medicine Clinical College, Nanjing University of Chinese Medicine, Nanjing, 222002, China
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, 222002, China
| | - Jie Wu
- Department of Digestive System, Pukou Hospital of Traditional Chinese Medicine, Nanjing, 210000, China
| | - Tingting Dai
- Department of Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210000, China
| | - Qiangcheng Wang
- Department of Oncology, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210000, China
| | - Shengjie Cai
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xuehan Wei
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziyu Jiang
- Department of Oncology, Lianyungang Integrated Traditional Chinese and Western Medicine Clinical College, Nanjing University of Chinese Medicine, Nanjing, 222002, China
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, 222002, China
| |
Collapse
|
3
|
Wang H, Bai C, Dang X, Wang H. MiR-383 sensitizes osteosarcoma cells to bortezomib treatment via down-regulating PSMB5. Mol Biol Rep 2024; 51:170. [PMID: 38252234 DOI: 10.1007/s11033-023-08964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Proteasome inhibition is a promising strategy for cancer therapy. Bortezomib, which primarily targets the chymotrypsin-like activity of PSMB5, has demonstrated efficacy in various tumors. However, there is variable sensitivity to bortezomib, which could be attributed, in part, to variations in the expression of proteasome subunits. METHODS AND RESULTS In this study, we investigated whether miR-383 affects the expression of proteasome subunits in osteosarcoma (OS) cells, and if so, whether OS cells display differential sensitivity to bortezomib concerning miR-383 expression. We detected a decreased miR-383 expression in OS cells and tissues. Then we found a negative correlation between the cytotoxicity of bortezomib and the expression level of the proteasome 20S core particle subunit β5 (PSMB5). Intriguingly, we identified PSMB5 as a direct target of miR-383. Increased expression of miR-383 resulted in decreased PSMB5 expression and increased sensitivity to bortezomib in OS cells. CONCLUSIONS In summary, our findings present the initial comprehensive analysis of the function of miR-383 in OS. The outcomes indicate that miR-383 may augment the anticancer effect of bortezomib through PSMB5 repression, offering a novel therapeutic approach in OS and a fresh pathway for proteasome regulation.
Collapse
Affiliation(s)
- Haifan Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Chuanyi Bai
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Haoyu Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
4
|
Prigol AN, Rode MP, da Luz Efe F, Saleh NA, Creczynski-Pasa TB. The Bone Microenvironment Soil in Prostate Cancer Metastasis: An miRNA Approach. Cancers (Basel) 2023; 15:4027. [PMID: 37627055 PMCID: PMC10452124 DOI: 10.3390/cancers15164027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bone metastatic prostate cancer (PCa) is associated with a high risk of mortality. Changes in the expression pattern of miRNAs seem to be related to early aspects of prostate cancer, as well as its establishment and proliferation, including the necessary steps for metastasis. Here we compiled, for the first time, the important roles of miRNAs in the development, diagnosis, and treatment of bone metastasis, focusing on recent in vivo and in vitro studies. PCa exosomes are proven to promote metastasis-related events, such as osteoblast and osteoclast differentiation and proliferation. Aberrant miRNA expression in PCa may induce abnormal bone remodeling and support tumor development. Furthermore, miRNAs are capable of binding to multiple mRNA targets, a dynamic property that can be harnessed for the development of treatment tools, such as antagomiRs and miRNA mimics, which have emerged as promising candidates in PCa treatment. Finally, miRNAs may serve as noninvasive biomarkers, as they can be detected in tissue and bodily fluids, are highly stable, and show differential expression between nonmetastatic PCa and bone metastatic samples. Taken together, the findings underscore the importance of miRNA expression profiles and miRNA-based tools as rational technologies to increase the quality of life and longevity of patients.
Collapse
Affiliation(s)
| | | | | | | | - Tânia Beatriz Creczynski-Pasa
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, Santa Catarina State, Brazil; (A.N.P.); (M.P.R.); (F.d.L.E.); (N.A.S.)
| |
Collapse
|
5
|
Ivkovic TC, Cornella H, Voss G, Ku A, Persson M, Rigo R, Gruvberger-Saal SK, Saal LH, Ceder Y. Functional In Vivo Screening Identifies microRNAs Regulating Metastatic Dissemination of Prostate Cancer Cells to Bone Marrow. Cancers (Basel) 2023; 15:3892. [PMID: 37568709 PMCID: PMC10416931 DOI: 10.3390/cancers15153892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Distant metastasis is the major cause of cancer-related deaths in men with prostate cancer (PCa). An in vivo functional screen was used to identify microRNAs (miRNAs) regulating metastatic dissemination of PCa cells. PC3 cells transduced with pooled miRZiP™ lentivirus library (anti-miRNAs) were injected intraprostatic to 13 NSG mice followed by targeted barcode/anti-miR sequencing. PCa cells in the primary tumours showed a homogenous pattern of anti-miRNAs, but different anti-miRNAs were enriched in liver, lung, and bone marrow, with anti-miR-379 highly enriched in the latter. The bone metastasis-promoting phenotype induced by decreased miR-379 levels was also confirmed in a less metastatic PCa cell line, 22Rv1, where all mice injected intracardially with anti-miR-379-22Rv1 cells developed bone metastases. The levels of miR-379 were found to be lower in bone metastases compared to primary tumours and non-cancerous prostatic tissue in a patient cohort. In vitro functional studies suggested that the mechanism of action was that reduced levels of miR-379 gave an increased colony formation capacity in conditions mimicking the bone microenvironment. In conclusion, our data suggest that specific miRNAs affect the establishment of primary tumours and metastatic dissemination, with a loss of miR-379 promoting metastases in bone.
Collapse
Affiliation(s)
- Tina Catela Ivkovic
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, 223 81 Lund, Sweden; (T.C.I.); (G.V.); (M.P.)
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Helena Cornella
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, 223 81 Lund, Sweden; (T.C.I.); (G.V.); (M.P.)
| | - Gjendine Voss
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, 223 81 Lund, Sweden; (T.C.I.); (G.V.); (M.P.)
| | - Anson Ku
- Department of Translational Medicine, Lund University, 205 02 Malmö, Sweden;
| | - Margareta Persson
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, 223 81 Lund, Sweden; (T.C.I.); (G.V.); (M.P.)
| | - Robert Rigo
- Division of Oncology and Pathology, Lund University, 223 81 Lund, Sweden; (R.R.); (S.K.G.-S.); (L.H.S.)
| | - Sofia K. Gruvberger-Saal
- Division of Oncology and Pathology, Lund University, 223 81 Lund, Sweden; (R.R.); (S.K.G.-S.); (L.H.S.)
| | - Lao H. Saal
- Division of Oncology and Pathology, Lund University, 223 81 Lund, Sweden; (R.R.); (S.K.G.-S.); (L.H.S.)
| | - Yvonne Ceder
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, 223 81 Lund, Sweden; (T.C.I.); (G.V.); (M.P.)
| |
Collapse
|
6
|
The regulatory role of LncRNA HCG18 in various cancers. J Mol Med (Berl) 2023; 101:351-360. [PMID: 36872315 DOI: 10.1007/s00109-023-02297-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 03/07/2023]
Abstract
As a member of long non-coding RNAs (lncRNAs), LncRNA HLA complex group 18 (HCG18) has recently become the focus of cancer research. As outlined in this review, LncRNA HCG18 has been reported to be dysregulated in various cancers development and appears to be activated in a variety of tumors, including clear cell renal cell carcinoma (ccRCC), colorectal cancer (CRC), gastric cancer (GC), hepatocellular carcinoma (HCC), laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC), lung adenocarcinoma (LUAD), nasopharyngeal cancer (NPC), osteosarcoma (OS), and prostate cancer (PCa). Furthermore, the expression of lncRNA HCG18 decreased in bladder cancer (BC) and papillary thyroid cancer (PTC). Overall, the presence of these differential expressions suggests the clinical value of HCG18 in cancer therapy. Additionally, lncRNA HCG18 influences various biological processes of cancer cells. This review summarizes the molecular mechanisms of HCG18 in cancer development, highlights reported the abnormal expression of HCG18 found in various cancer types, and aims to discuss the potential of HCG18 as a target for cancer therapy.
Collapse
|
7
|
Nakamachi Y, Uto K, Hayashi S, Okano T, Morinobu A, Kuroda R, Kawan S, Saegusa J. Exosomes derived from synovial fibroblasts from patients with rheumatoid arthritis promote macrophage migration that can be suppressed by miR-124-3p. Heliyon 2023; 9:e14986. [PMID: 37151687 PMCID: PMC10161379 DOI: 10.1016/j.heliyon.2023.e14986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Objectives Exosomes are potent vehicles for intercellular communication. Rheumatoid arthritis (RA) is a chronic systemic disease of unknown etiology. Local administration of miR-124 precursor to rats with adjuvant-induced arthritis suppresses systemic arthritis and bone destruction. Thus, exosomes may be involved in this disease. We aimed to determine the role of exosomes in the pathology of RA. Methods Fibroblast-like synoviocytes (FLS) were collected from patients with RA and osteoarthritis (OA). miR-124-3p mimic was transfected into the RA FLS (RA miR-124 FLS). Exosomes were collected from the culture medium by ultracentrifugation. Macrophages were produced from THP-1 cells. MicroRNAs in the exosomes were analyzed using real-time PCR. Proteomics analysis was performed using nanoscale liquid chromatography-tandem mass spectrometry. Macrophage migration was evaluated using a Transwell migration assay. SiRNA was used to knockdown proteins of interest. Results MicroRNAs in the RA FLS, RA miR-124 FLS, and OA FLS exosomes were similar. Proteomics analysis revealed that pentraxin 3 (PTX3) levels were higher in RA FLS exosomes than in RA miR-124 FLS and OA FLS exosomes, and proteasome 20S subunit beta 5 (PSMB5) levels were lower in RA FLS exosomes than in RA miR-124 FLS and OA FLS exosomes. The RA FLS exosomes promoted and the RA miR-124 FLS exosomes suppressed macrophage migration. PTX3-silenced RA FLS exosomes suppressed and PSMB5-silenced OA FLS exosomes promoted macrophage migration. Conclusions RA FLS exosomes promote macrophage migration via PTX3 and PSMB5, and miR-124-3p suppresses this migration.
Collapse
|
8
|
Wan S, Cao J, Chen S, Yang J, Wang H, Wang C, Li K, Yang L. Construction of noninvasive prognostic model of bladder cancer patients based on urine proteomics and screening of natural compounds. J Cancer Res Clin Oncol 2023; 149:281-296. [PMID: 36562811 DOI: 10.1007/s00432-022-04524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bladder cancer (BCa) has a high incidence and recurrence rate worldwide. So far, there is no noninvasive detection of BCa therapy and prognosis based on urine multi-omics. Therefore, it is necessary to explore noninvasive predictive models and novel treatment modalities for BCa. METHODS First, we performed protein analysis of urine from five BCa patients and five healthy individuals using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Combining multi-omics data to mine particular and sensitive molecules to predict BCa prognosis. Second, urine proteomics data were combined with TCGA transcriptome data to select differential genes that were specifically highly expressed in urine and tissues. Further, the Lasso equation was used to screen specific molecules to construct a noninvasive prediction model of BCa. Finally, natural compounds of specific molecules were selected by combined network pharmacology and molecular docking to complete molecular structure docking. RESULTS A noninvasive predictive model was constructed using PSMB5, P4HB, S100A16, GET3, CNP, TFRC, DCXR, and MPZL1, specific molecules screened by multi-omics, and clinical features, which had good predictive value at 1, 3, and 5 years of prediction. High expression of these target genes suggests a poor prognosis in patients with BCa, and they were mainly involved in cell adhesion molecules and the IGF pathway. In addition, the corresponding drugs and natural compounds were selected by network pharmacology, and the molecular structure 7NHT of PSMB5 was found to be well docked to Ellagic acid, a natural compound in Hetaoren that we found. The 3D structure 6I7S of P4HB was able to bind to Stigmasterol in Shanzha stably, and the structure 6WRV of TFRC as an iron transport carrier was also able to bind to Stigmasterol in Shanzha stably. The structures 1WOJ, 3D3W, and 6IGW of CNP, DCXR, and MPZL1 can also play an important role in combination with the natural compounds (S)-Stylopine, Kryptoxanthin, and Sitosterol in Maqianzi, Yumixu, and Laoguancao. CONCLUSION The noninvasive prediction model based on urinomics had excellent potential in predicting the prognosis of patients with BCa. The multi-omics screening of specific molecules combined with pharmacology and compound molecular docking can promote the research and development of novel drugs.
Collapse
Affiliation(s)
- Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Jinlong Cao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Siyu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Jianwei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Huabin Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Chenyang Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Kunpeng Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China. .,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Wen X, Dai Y, Wu S, Li J. miR-127-3p Inhibits Breast Cancer Cell Behaviors via Targeting Benzodiazepine Receptor-Associated Protein 1 (BZRAP1). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
microRNAs are key regulators of cell proliferation, apoptosis, and anti-cancer immune response. This study intends to evaluate miR-127-3p’s role in breast cancer cells (BC). After transfection, miR-156 and BZRAP1 expression was assessed by qRT-PCR and Western blotting along with
analysis of cell proliferation and apoptosis by MTT and flow cytometry. Finally, an in vivo tumor model was established to verify miR-127-3p’s in vivo effect. Transfection of si-BZRAP1/miR-127-3p into MCF-7 cells reduced BZRAP1 expression, inhibited cell proliferation and
promoted apoptosis. miR-127-3p is confirmed to target BZRAP1 and exerts tumor suppressor activity by inhibiting BZRAP1. miR-127-3p inhibited BC cell growth and promote apoptosis by targeting BZRAP1, indicating that it is expected to be a target for the treatment of BC. The significance of
this study is to confirm that miR-127-3p may participate in tumor progression via BZRAP1, and may become a potential target for treating tumor. Further analysis of the pathogenesis of breast cancer and detection of miR-127-3p/BZRAP1 in BC has important application value in the treatment.
Collapse
Affiliation(s)
- Xiaoqiang Wen
- Department of Oncology and Breast Surgery, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, China
| | - Yinhai Dai
- Department of Oncology and Breast Surgery, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, China
| | - Shaofeng Wu
- Department of Oncology and Breast Surgery, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, China
| | - Junqiang Li
- Department of Oncology and Breast Surgery, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, China
| |
Collapse
|
10
|
Liu J, Mi J, Liu S, Chen H, Jiang L. PSMB5 overexpression is correlated with tumor proliferation and poor prognosis in hepatocellular carcinoma. FEBS Open Bio 2022; 12:2025-2041. [PMID: 36062301 PMCID: PMC9623531 DOI: 10.1002/2211-5463.13479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 01/25/2023] Open
Abstract
Aberrant expression of members of the proteasome subunit beta (PSMB) family (including PSMB2, PSMB4, PSMB7 and PSMB8) has been reported in hepatocellular carcinoma (HCC). However the role of PSMB5 in HCC is unclear. To address this issue, we examined the expression of PSMB5 in HCC tissues using the The Cancer Genome Atlas, International Cancer Genome Consortium and Gene Expression Omnibus databases. A quantitative real-time PCR and immunohistochemistry were performed to validate the expression of PSMB5 in HCC. The survival mutation status and immune cell infiltration of PSMB5 were also evaluated in HCC. We then examined the effect of knocking down PSMB5 expression through RNA interference in the HCC cell line Huh7. High expression of PSMB5 was observed in HCC tissues and was associated with poor prognosis. PSMB5 expression and clinical characteristics were then incorporated to build a prognostic nomogram. We observed that PSMB5 expression was closely related to the abundance of B cells, CD4+ T cells, CD8+ T cells, dendritic cell macrophages and neutrophils. Moreover silencing of PSMB5 in Huh7 significantly suppressed cell proliferation and migration at the same time as increasing apoptosis. Inhibition of the phosphatidylinositol-3-kinase/Akt/mechanistic target of rapamycin pathway was observed after PSMB5 downregulation in Huh7 cells. Our findings suggest that PSMB5 may promote the proliferation of HCC cells by inactivating the phosphatidylinositol-3-kinase/Akt/mechanistic target of rapamycin signaling pathway and thus PSMB5 may have potential as a biomarker for diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Jun Liu
- Guangxi Medical UniversityNanningChina
| | - Jinglin Mi
- Department of Radiation OncologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | | | | | - Li Jiang
- Department of Radiation OncologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
11
|
Gao Y, Gao Y, Niu Z, Liu J, Feng H, Sun J, Wang L, Pan L. CCCTC-binding factor-mediated microRNA-340-5p suppression aggravates myocardial injury in rats with severe acute pancreatitis through activation of the HMGB1/TLR4 axis. Immunopharmacol Immunotoxicol 2022; 44:306-315. [PMID: 35238277 DOI: 10.1080/08923973.2022.2043898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/13/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a life-threatening disorder associated with multisystem organ failure. This study aimed to investigate the function of high mobility group box 1 (HMGB1) in SAP-induced myocardial injury. METHODS A rat model with SAP was induced. The pathological changes in rat pancreatic and cardiac tissues were examined by HE staining. Cardiomyocyte apoptosis in rat cardiac tissues, and the serum levels of myocardial injury markers and pro-inflammatory cytokines were examined. Rat primary cardiomyocytes were treated with H2O2 for in vitro experiments. The regulatory molecules of HMGB1 were predicted by bioinformatics analysis. Altered expression of HMGB1, microRNA (miR)-340-5p and CCCTC-binding factor (CTCF) was introduced in rats or cells to investigate their roles in myocardial injury. RESULTS CTCF and HMGB1 were highly expressed but miR-340-5p was poorly expressed in cardiac tissues of rats with SAP. HMGB1 silencing reduced toll-like receptor 4 (TLR4) expression to promote proliferation and reduce apoptosis of H2O2-treated cardiomyocytes. miR-340-5p targeted HMGB1 mRNA, while CTCF suppressed miR-340-5p transcription. CTCF upregulation or miR-340-5p downregulation blocked the effects of HMGB1 silencing on cardiomyocytes. In vivo, CTCF silencing alleviated injury in rat pancreatic and cardiac tissues and reduced the expression of creatine kinase-MB (CK-MB), lactic dehydrogenase, interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in rat serum. But further overexpression of HMGB1 or inhibition of miR-340-5p aggravated the symptoms in rats. CONCLUSION This study demonstrated that CTCF reduces transcription of miR-340-5p to promote HMGB1 expression, which activates TLR4 expression and promotes myocardial injury in rats with SAP.
Collapse
Affiliation(s)
- Yazhou Gao
- Department of Emergency Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yanxia Gao
- Department of Emergency Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Zequn Niu
- Department of Emergency Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jie Liu
- Department of Emergency Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Hui Feng
- Department of Emergency Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jiangli Sun
- Department of Emergency Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Liming Wang
- Department of Emergency Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Longfei Pan
- Department of Emergency Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
12
|
A Multiomics Profiling Based on Online Database Revealed Prognostic Biomarkers of BLCA. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2449449. [PMID: 35669725 PMCID: PMC9165618 DOI: 10.1155/2022/2449449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
Background Bladder cancer (BLCA) is one of the most common urological malignancies globally, posing a severe threat to public health. In combination with protein-protein interaction (PPI) network analysis of proteomics, Gene Set Variation Analysis (GSVA) and “CancerSubtypes” package of R software for transcriptomics can help identify biomarkers related to BLCA prognosis. This will have significant implications for prevention and treatment. Method BLCA data were downloaded from The Cancer Genome Atlas (TCGA) database and GEO database (GSE13507). GSVA analysis converted the gene expression matrix to the gene set expression matrix. “CancerSubtypes” classified patients into three subtypes and established a prognostic model based on differentially expressed gene sets (DEGSs) among the three subtypes. For genes from prognosis-related DEGSs, functional and pathway enrichment analyses and PPI network analysis were carried out. The Human Protein Atlas (HPA) database was used for validation. Finally, the proportion of tumor-infiltrating immune cells (TIICs) was determined using the CIBERSORT algorithm. Results In total, 414 tumor samples and 19 adjacent-tumor samples were obtained from TCGA, with 145 samples belonging to subtype A, 126 samples belonging to subtype B, and 136 samples belonging to subtype C. Then, we identified 83 DEGSs and constituted a prognostic signature with two of them: “GSE1460_CD4_THYMOCYTE_VS_THYMIC_STROMAL_CELL_DN” and “MODULE_253.” Finally, five subnets of two PPI networks were established, and nine core proteins were obtained: CDH2, COL1A1, EIF2S2, PSMA3, NAA10, DNM1L, TUBA4A, KIF11, and KIF23. The HPA database confirmed the expression of the nine core proteins in BLCA tissues. Furthermore, EIF2S2, PSMA3, DNM1L, and TUBA4A could be novel BLCA prognostic biomarkers. Conclusions In this study, we discovered two gene sets linked to BLCA prognosis. PPI analysis confirmed the network's core proteins, and several newly discovered biomarkers of BLCA prognosis were identified.
Collapse
|
13
|
Barbosa-Silva A, Magalhães M, Da Silva GF, Da Silva FAB, Carneiro FRG, Carels N. A Data Science Approach for the Identification of Molecular Signatures of Aggressive Cancers. Cancers (Basel) 2022; 14:2325. [PMID: 35565454 PMCID: PMC9103663 DOI: 10.3390/cancers14092325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
The main hallmarks of cancer include sustaining proliferative signaling and resisting cell death. We analyzed the genes of the WNT pathway and seven cross-linked pathways that may explain the differences in aggressiveness among cancer types. We divided six cancer types (liver, lung, stomach, kidney, prostate, and thyroid) into classes of high (H) and low (L) aggressiveness considering the TCGA data, and their correlations between Shannon entropy and 5-year overall survival (OS). Then, we used principal component analysis (PCA), a random forest classifier (RFC), and protein-protein interactions (PPI) to find the genes that correlated with aggressiveness. Using PCA, we found GRB2, CTNNB1, SKP1, CSNK2A1, PRKDC, HDAC1, YWHAZ, YWHAB, and PSMD2. Except for PSMD2, the RFC analysis showed a different list, which was CAD, PSMD14, APH1A, PSMD2, SHC1, TMEFF2, PSMD11, H2AFZ, PSMB5, and NOTCH1. Both methods use different algorithmic approaches and have different purposes, which explains the discrepancy between the two gene lists. The key genes of aggressiveness found by PCA were those that maximized the separation of H and L classes according to its third component, which represented 19% of the total variance. By contrast, RFC classified whether the RNA-seq of a tumor sample was of the H or L type. Interestingly, PPIs showed that the genes of PCA and RFC lists were connected neighbors in the PPI signaling network of WNT and cross-linked pathways.
Collapse
Affiliation(s)
- Adriano Barbosa-Silva
- Center for Medical Statistics, Informatics and Intelligent Systems, Institute for Artificial Intelligence, Medical University of Vienna, 1090 Vienna, Austria
- Centre for Translational Bioinformatics, William Harvey Research Institute, Queen Mary University of London, London E14NS, UK
- ITTM S.A.-Information Technology for Translational Medicine, Esch-sur-Alzette, 4354 Luxembourg, Luxembourg
| | - Milena Magalhães
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
| | - Gilberto Ferreira Da Silva
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
| | - Fabricio Alves Barbosa Da Silva
- Laboratório de Modelagem Computacional de Sistemas Biológicos, Scientific Computing Program, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
| | - Flávia Raquel Gonçalves Carneiro
- Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231050, Brazil
| | - Nicolas Carels
- Plataforma de Modelagem de Sistemas Biológicos, Center for Technology Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040900, Brazil
| |
Collapse
|
14
|
Yang Z, Pu M, Dong X, Yang H, Chang W, Liu T, Zhang X. CTCF-activated SNHG16 facilitates gastrointestinal stromal tumor by targeting miR-128-3p/CASC3 axis. Exp Cell Res 2022; 417:113131. [DOI: 10.1016/j.yexcr.2022.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
|
15
|
Anticancer potential of allicin: A review. Pharmacol Res 2022; 177:106118. [DOI: 10.1016/j.phrs.2022.106118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
16
|
Lorente G, Ntostis P, Maitland N, Mengual L, Musquera M, Muneer A, Oliva R, Iles D, Miller D. Semen sampling as a simple, noninvasive surrogate for prostate health screening. Syst Biol Reprod Med 2021; 67:354-365. [PMID: 34180329 DOI: 10.1080/19396368.2021.1923086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The detection rates for prostate cancer (pCa) by invasive biopsy are high, fully justifying its use in confirmatory testing. False-positive results of prior, relatively insensitive screening tests, however, can lead to expensive and often unnecessary surgery. Several reports have suggested the potential use of the ejaculate to screen for prostate conditions. Hitherto, the potential impact of sterilization on the diagnostic potential of seminal plasma screening has not been examined. Herein, we report cellular and molecular comparisons of semen samples obtained from normal (N = 5), vasectomized (N = 5) and prostate pathology patients (N = 4; confirmed by a biopsy) that were centrifuged over 60% PureSperm cushions. Non-penetrating cells were washed prior to immunocytochemistry with prostatic epithelial cell markers including PSMA, NKX3.1 and CD24. KRT18 was used to highlight epithelial cells in these samples. RNA sequencing was then used to identify differentially expressed small RNAs associated with vasectomy and prostate pathology. Specific gene transcripts were confirmed by RT-qPCR. PMSA+/KRT18+, CD24+/KRT18+ and NKX3.1/+KRT18+ cells were observed, albeit infrequently in most processed semen samples by indirect immunocytochemistry. Targeted RT-qPCR supported their enrichment, along with their putative designation as prostatic luminal cells. Small RNAs in seminal plasma were highly heterogeneous, with tRNAs and miRNAs being the dominant forms. Hsa-miR-143 and hsa-miR-199 were among the most prominent of the differentially expressed miRNAs upregulated in samples with prostate pathology but not vasectomy. The targets of these small RNAs illustrate biological processes involved among others in transcription regulation and collagen metabolism. Our outcomes strongly support an appraisal of selected biologically meaningful small RNAs of ejaculate semen for prostate health screening. A long-term goal would be a simple, routine, noninvasive test for monitoring prostate health, potentially among younger men.
Collapse
Affiliation(s)
- Gisela Lorente
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Panagiotis Ntostis
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | | | - Lourdes Mengual
- Laboratory and Department of Urology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic and University of Barcelona, Barcelona, Spain
| | - Mireia Musquera
- Laboratory and Department of Urology, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic and University of Barcelona, Barcelona, Spain
| | - Asif Muneer
- Department of Urology and NIHR Biomedical Research Centre, University College London Hospital, London, UK
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Group, Biomedical Research Institute August Pi I Sunyer (IDIBAPS), Biochemistry and Molecular Genetics Service, Hospital Clínic, and Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - David Iles
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - David Miller
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
17
|
Sun Y, Sun W, Hua H, Zhang J, Yu Q, Wang J, Liu X, Dong A. Overexpression of miR-127 Predicts Poor Prognosis and Contributes to the Progression of Papillary Thyroid Cancer by Targeting REPIN1. Horm Metab Res 2021; 53:197-203. [PMID: 33339069 DOI: 10.1055/a-1322-3160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Papillary thyroid cancer (PTC) is a major kind of thyroid cancer with increasing recurrence and metastasis. MiR-127 has been demonstrated to play roles in many cancers with dysregulation. However, the function of miR-127 is still unknown. This study aimed to explore a novel biomarker for the progression and prognosis of PTC. A set of 118 patients with PTC were collected from the Affiliated Hospital of Qingdao University. qRT-PCR was used to detect the expression of miR-127 in PTC tissues and cells. The association between miR-127 expression and the clinicopathological features of patients were evaluated by the χ2 test, and the prognostic value of miR-127 was evaluated by Kaplan-Meier analysis and Cox regression analysis. The effect of miR-127 on cell proliferation, migration, and invasion of PTC was analyzed by CCK-8 and transwell assay. miR-127 was found to be upregulated in PTC tissues and cells correlated with the TNM stage and poor prognosis of PTC patients. MiR-127 and the TNM stage were considered as two independent prognostic indicators for PTC. Moreover, overexpression of miR-127 significantly enhanced cell proliferation, migration, and invasion of PTC by targeting REPIN1. miR-127 may be involved in the progression of PTC, which provides a new therapeutic strategy for PTC.
Collapse
Affiliation(s)
- Yinghe Sun
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China
| | - Wenhai Sun
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China
| | - Hui Hua
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China
| | - Jianhua Zhang
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China
| | - Qianqian Yu
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China
| | - Jueru Wang
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China
| | - Xiaomin Liu
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China
| | - Anbing Dong
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China
| |
Collapse
|
18
|
Chen Y, Chen Z, Mo J, Pang M, Chen Z, Feng F, Xie P, Yang B. Identification of HCG18 and MCM3AP-AS1 That Associate With Bone Metastasis, Poor Prognosis and Increased Abundance of M2 Macrophage Infiltration in Prostate Cancer. Technol Cancer Res Treat 2021; 20:1533033821990064. [PMID: 33596783 PMCID: PMC7897818 DOI: 10.1177/1533033821990064] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Bone metastasis is a leading cause of the high mortality rate of prostate cancer (PCa), but curative strategies remain lacking. Recent studies suggest long non-coding RNAs (lncRNAs) may be potential targets to develop drugs. However, PCa bone metastasis-specifically-related lncRNAs were rarely reported. This study aimed to identify crucial lncRNAs and reveal their function mechanisms. Methods: GSE32269 and GSE26964 microarray datasets, downloaded from the Gene Expression Omnibus database, were used to analyze differentially expressed genes (DEGs)/lncRNAs (DELs) and miRNAs (DEMs), respectively. Weighted gene co-expression network analysis was performed to screen PCa bone metastasis-associated modules. The co-expression and competing endogenous RNAs (ceRNAs) networks were constructed to identify hub lncRNAs. Univariate Cox regression analysis was conducted to determine their prognostic values. The correlation of lncRNAs with immune infiltrating cells was analyzed by using Tumor IMmune Estimation Resource. Therapeutic drugs were predicted by querying the Connectivity Map (CMap) and the Comparative Toxicogenomics Database (CTD). Results: A total of 18 DELs, 2,614 DEGs and 86 DEMs were screened between bone metastatic and primary PCa samples. Four modules enriched by DEGs were shown to be bone metastasis-associated. LncRNA HCG18 and MCM3AP-AS1 were identified to be important because they existed in both of the co-expression and ceRNA networks (forming the relationship pairs: HCG18/MCM3AP-AS1-KNTC1, MCM3AP-AS1-hsa-miR-508-3p-DTL and HCG18/MCM3AP-AS1-hsa-miR-127-3p-CDKN3). All the genes in these interaction pairs were significantly associated with overall survival of PCa patients. Also, HCG18, MCM3AP-AS1 and their target mRNAs were positively correlated with various tumor-infiltrated immune cells, especially increased M2 macrophages. Valproic acid and trichostatin A may be effective to treat PCa bone metastasis by targeting HCG18 and MCM3AP-AS1. Conclusion: HCG18 and MCM3AP-AS1 that regulate M2 macrophage infiltration may be important targets to treat PCa bone metastasis and improve prognosis.
Collapse
Affiliation(s)
- Yanfang Chen
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zheng Chen
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jian Mo
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zihao Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Feng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Peigen Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Bu Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
19
|
He W, Fu Y, Zheng Y, Wang X, Liu B, Zeng J. Diallyl thiosulfinate enhanced the anti-cancer activity of dexamethasone in the side population cells of multiple myeloma by promoting miR-127-3p and deactivating the PI3K/AKT signaling pathway. BMC Cancer 2021; 21:125. [PMID: 33549034 PMCID: PMC7866463 DOI: 10.1186/s12885-021-07833-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background Side population (SP) cells, which have similar features to those of cancer stem cells, show resistance to dexamethasone (Dex) treatment. Thus, new drugs that can be used in combination with Dex to reduce the population of SP cells in multiple myeloma (MM) are required. Diallyl thiosulfinate (DATS, allicin), a natural organosulfur compound derived from garlic, has been shown to inhibit the proliferation of SP cells in MM cell lines. Therefore, we investigated the effect of a combination of DATS and Dex (DAT + Dex) on MM SP cells. Methods SP cells were sorted from MM RPMI-8226 and NCI-H929 cell lines using Hoechst 33342-labeled fluorescence-activated cell sorting. The growth of SP cells was evaluated using the cell counting kit-8 assay. Cell cycle and apoptosis assays were conducted using a BD Calibur flow cytometer. miRNA expression was measured using quantitative reverse transcription-polymerase chain reaction. Phosphoinositide 3-kinase (PI3K), phosphorylated AKT (p-AKT), AKT, p-mechanistic target of rapamycin (mTOR), and mTOR levels were measured using western blot analysis. Results Our results showed that the combination of DATS+Dex inhibited sphere formation, colony formation, and proliferation of MM SP cells by inducing apoptosis and cell cycle arrest in the G1/S phase. In addition, the combination of DATS+Dex promoted miR-127-3p expression and inhibited PI3K, p-AKT, and p-mTOR expression in SP cells. Knockdown of miR-127-3p expression weakened the effect of DATS+Dex on cell proliferation, colony formation, apoptosis, and cell cycle of MM SP cells. Additionally, knockdown of miR-127-3p activated the PI3K/AKT/mTOR signaling pathway in MM SP cells cotreated with DATS+Dex. Conclusion We demonstrated that cotreatment with DATS+Dex reduced cell proliferation, promoted apoptosis, and caused cell cycle arrest of MM SP cells by promoting miR-127-3p expression and deactivating the PI3K/AKT/mTOR signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07833-5.
Collapse
Affiliation(s)
- Wenfeng He
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yonghui Fu
- Department of Psychiatry, Jiangxi Mental Hospital, Nanchang, 330029, Jiangxi Province, China
| | - Yongliang Zheng
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, ji'an, 343000, Jiangxi Province, China
| | - Xiaoping Wang
- Comprehensive teaching and research office, Ji'an College, ji'an, 343000, Jiangxi Province, China
| | - Bin Liu
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, ji'an, 343000, Jiangxi Province, China
| | - Junquan Zeng
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, ji'an, 343000, Jiangxi Province, China. .,Department of internal medicine, Jinggangshan University, ji'an, 343009, Jiangxi Province, China.
| |
Collapse
|
20
|
Cen J, Liang Y, Huang Y, Pan Y, Shu G, Zheng Z, Liao X, Zhou M, Chen D, Fang Y, Chen W, Luo J, Zhang J. Circular RNA circSDHC serves as a sponge for miR-127-3p to promote the proliferation and metastasis of renal cell carcinoma via the CDKN3/E2F1 axis. Mol Cancer 2021; 20:19. [PMID: 33468140 PMCID: PMC7816303 DOI: 10.1186/s12943-021-01314-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There is increasing evidence that circular RNAs (circRNAs) have significant regulatory roles in cancer development and progression; however, the expression patterns and biological functions of circRNAs in renal cell carcinoma (RCC) remain largely elusive. METHOD Bioinformatics methods were applied to screen for circRNAs differentially expressed in RCC. Analysis of online circRNAs microarray datasets and our own patient cohort indicated that circSDHC (hsa_circ_0015004) had a potential oncogenic role in RCC. Subsequently, circSDHC expression was measured in RCC tissues and cell lines by qPCR assay, and the prognostic value of circSDHC evaluated. Further, a series of functional in vitro and in vivo experiments were conducted to assess the effects of circSDHC on RCC proliferation and metastasis. RNA pull-down assay, luciferase reporter and fluorescent in situ hybridization assays were used to confirm the interactions between circSDHC, miR-127-3p and its target genes. RESULTS Clinically, high circSDHC expression was correlated with advanced TNM stage and poor survival in patients with RCC. Further, circSDHC promoted tumor cell proliferation and invasion, both in vivo and in vitro. Analysis of the mechanism underlying the effects of circSDHC in RCC demonstrated that it binds competitively to miR-127-3p and prevents its suppression of a downstream gene, CDKN3, and the E2F1 pathway, thereby leading to RCC malignant progression. Furthermore, knockdown of circSDHC caused decreased CDKN3 expression and E2F1 pathway inhibition, which could be rescued by treatment with an miR-127-3p inhibitor. CONCLUSION Our data indicates, for the first time, an essential role for the circSDHC/miR-127-3p/CDKN3/E2F1 axis in RCC progression. Thus, circSDHC has potential to be a new therapeutic target in patients with RCC.
Collapse
Affiliation(s)
- Junjie Cen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Yanping Liang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Yong Huang
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Yihui Pan
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Guannan Shu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Zhousan Zheng
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Xiaozhong Liao
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport road, Guangzhou, 510405, People's Republic of China
| | - Mi Zhou
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Danlei Chen
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Yong Fang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China.
| | - Junhang Luo
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China.
| | - Jiaxing Zhang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
21
|
Downregulation of miRNA-205 Expression and Biological Mechanism in Prostate Cancer Tumorigenesis and Bone Metastasis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6037434. [PMID: 33178832 PMCID: PMC7646560 DOI: 10.1155/2020/6037434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/22/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022]
Abstract
Background The expression and mechanism of microRNA-205 (miRNA-205) in prostate cancer (PCa) and its bone metastasis remain controversial. Materials and Methods The expression and discriminating capability of miRNA-205 were assessed by drawing a forest plot and a summarized receiver operating characteristic (SROC) curve, using data available from 27 miRNA-array and miRNA-sequencing datasets. The miRNA-205 target genes were acquired from online prediction tools, differentially upregulated genes in PCa, and differentially expressed genes (DEGs) after miRNA-205 transfection into PCa cell lines. Functional enrichment analysis was conducted to explore the biological mechanism of miRNA-205 targets. Immunohistochemistry (IHC) was applied to verify the protein level of the hub gene. Results The expression of miRNA-205 in the PCa group (1,461 samples) was significantly lower than that in the noncancer group (510 samples), and the downregulation of miRNA-205 showed excellent sensitivity and specificity in differentiating between the two groups. In bone metastatic PCa, the miRNA-205 level was further reduced than in nonbone metastatic PCa, and it showed a good capability in distinguishing between the two groups. In total, 153 miRNA-205 targets were screened through the three aforementioned methods. Based on the results of functional enrichment analysis, the targets of miRNA-205 were mainly enriched during chromosome segregation and phospholipid-translocating ATPase activity and in the spindle microtubule and the p53 signaling pathway. CDK1 had the highest connectivity in the PPI network analysis and was screened as one of the hub genes. A statistically significant negative correlation between miRNA-205 and CDK1 was observed. The expression of CDK1 in PCa samples was pronouncedly upregulated in terms of both the mRNA level and the protein level when compared with noncancer samples. Conclusion miRNA-205 may play a vital role in PCa tumorigenesis and bone metastasis by targeting CDK1.
Collapse
|
22
|
Ding XQ, Wang ZY, Xia D, Wang RX, Pan XR, Tong JH. Proteomic Profiling of Serum Exosomes From Patients With Metastatic Gastric Cancer. Front Oncol 2020; 10:1113. [PMID: 32754443 PMCID: PMC7367030 DOI: 10.3389/fonc.2020.01113] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Clinical management of metastatic gastric cancer (mGC) remains a major challenge due to a lack of specific biomarkers and effective therapeutic targets. Recently, accumulating evidence has suggested that exosomes play an essential role in cancer metastasis and can be an excellent reservoir of novel biomarkers and candidate therapeutic targets for cancer. Therefore, in this study, we aimed to reveal the proteomic profile of mGC-derived exosomes. Methods: Exosomes were isolated from pooled serum samples of 20 mGC patients and 40 healthy controls (HC) by ultracentrifugation. Next, quantitative proteomic analyses were applied to analyze the protein profiles of the exosomes, and bioinformatic analyses were conducted on the proteomic data. Finally, the expression of exosomal protein candidates was selectively validated in individual subjects by western blot analysis. Results: We isolated exosomes from serum samples. The size of the serum derived exosomes ranged from 30 to 150 nm in diameter. The exosomal markers CD9 and CD81 were observed in the serum exosomes. However, the exosomal negative marker calnexin, an endoplasmic reticulum protein, was not detected in exosomes. Overall, 443 exosomal proteins, including 110 differentially expressed proteins (DEPs) were identified by quantitative proteomics analyses. The bioinformatics analyses indicated that the upregulated proteins were enriched in the process of protein metabolic, whereas the downregulated proteins were largely involved in cell-cell adhesion organization. Surprisingly, 10 highly vital proteins (UBA52, PSMA1, PSMA5, PSMB6, PSMA7, PSMA4, PSMA3, PSMB1, PSMA6, and FGA) were filtered from DEPs, most of which are proteasome subunits. Moreover, the validation data confirmed that PSMA3 and PSMA6 were explicitly enriched in the serum derived exosomes from patients with mGC. Conclusion: The present study provided a comprehensive description of the serum exosome proteome of mGC patients, which could be an excellent resource for further studies of mGC.
Collapse
Affiliation(s)
- Xiao-Qing Ding
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe-Ying Wang
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Xia
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Xian Wang
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Rong Pan
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Hua Tong
- Faculty of Medical Laboratory Science and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Starzyńska T, Karczmarski J, Paziewska A, Kulecka M, Kuśnierz K, Żeber-Lubecka N, Ambrożkiewicz F, Mikula M, Kos-Kudła B, Ostrowski J. Differences between Well-Differentiated Neuroendocrine Tumors and Ductal Adenocarcinomas of the Pancreas Assessed by Multi-Omics Profiling. Int J Mol Sci 2020; 21:E4470. [PMID: 32586046 PMCID: PMC7352720 DOI: 10.3390/ijms21124470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Most pancreatic neuroendocrine tumors (PNETs) are indolent, while pancreatic ductal adenocarcinomas (PDACs) are particularly aggressive. To elucidate the basis for this difference and to establish the biomarkers, by using the deep sequencing, we analyzed somatic variants across coding regions of 409 cancer genes and measured mRNA/miRNA expression in nine PNETs, eight PDACs, and four intestinal neuroendocrine tumors (INETs). There were 153 unique somatic variants considered pathogenic or likely pathogenic, found in 50, 57, and 24 genes in PDACs, PNETs, and INETs, respectively. Ten and 11 genes contained a pathogenic mutation in at least one sample of all tumor types and in PDACs and PNETs, respectively, while 28, 34, and 11 genes were found to be mutated exclusively in PDACs, PNETs, and INETs, respectively. The mRNA and miRNA transcriptomes of PDACs and NETs were distinct: from 54 to 1659 differentially expressed mRNAs and from 117 to 250 differentially expressed miRNAs exhibited high discrimination ability and resulted in models with an area under the receiver operating characteristics curve (AUC-ROC) >0.9 for both miRNA and mRNA. Given the miRNAs high stability, we proposed exploring that class of RNA as new pancreatic tumor biomarkers.
Collapse
Affiliation(s)
- Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Agnieszka Paziewska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Katarzyna Kuśnierz
- Department of Gastrointestinal Surgery, Medical University of Silesia, 40-514 Katowice, Poland;
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Filip Ambrożkiewicz
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, ENETS Center of Excelence, Department of Pathophysiology and Endocrinology, Medical University of Silesia, 40-514 Katowice, Poland;
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| |
Collapse
|
24
|
Lin SR, Mokgautsi N, Liu YN. Ras and Wnt Interaction Contribute in Prostate Cancer Bone Metastasis. Molecules 2020; 25:E2380. [PMID: 32443915 PMCID: PMC7287876 DOI: 10.3390/molecules25102380] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent and malignant cancer types in men, which causes more than three-hundred thousand cancer death each year. At late stage of PCa progression, bone marrow is the most often metastatic site that constitutes almost 70% of metastatic cases of the PCa population. However, the characteristic for the osteo-philic property of PCa is still puzzling. Recent studies reported that the Wnt and Ras signaling pathways are pivotal in bone metastasis and that take parts in different cytological changes, but their crosstalk is not well studied. In this review, we focused on interactions between the Wnt and Ras signaling pathways during each stage of bone metastasis and present the fate of those interactions. This review contributes insights that can guide other researchers by unveiling more details with regard to bone metastasis and might also help in finding potential therapeutic regimens for preventing PCa bone metastasis.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Ntlotlang Mokgautsi
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| |
Collapse
|