1
|
Long L, Lin Q, Wang J, Ding S. Microbial α-L-arabinofuranosidases: diversity, properties, and biotechnological applications. World J Microbiol Biotechnol 2024; 40:84. [PMID: 38294733 DOI: 10.1007/s11274-023-03882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024]
Abstract
Arabinoxylans (AXs) are hemicellulosic polysaccharides consisting of a linear backbone of β-1,4-linked xylose residues branched by high content of α-L-arabinofuranosyl (Araf) residues along with other side-chain substituents, and are abundantly found in various agricultural crops especially cereals. The efficient bioconversion of AXs into monosaccharides, oligosaccharides and/or other chemicals depends on the synergism of main-chain enzymes and de-branching enzymes. Exo-α-L-arabinofuranosidases (ABFs) catalyze the hydrolysis of terminal non-reducing α-1,2-, α-1,3- or α-1,5- linked α-L-Araf residues from arabinose-substituted polysaccharides or oligosaccharides. ABFs are critically de-branching enzymes in bioconversion of agricultural biomass, and have received special attention due to their application potentials in biotechnological industries. In recent years, the researches on microbial ABFs have developed quickly in the aspects of the gene mining, properties of novel members, catalytic mechanisms, methodologies, and application technologies. In this review, we systematically summarize the latest advances in microbial ABFs, and discuss the future perspectives of the enzyme research.
Collapse
Affiliation(s)
- Liangkun Long
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, China CO-OP, Nanjing, 211111, People's Republic of China
| | - Jing Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shaojun Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| |
Collapse
|
2
|
Li J, Wiebenga A, Lipzen A, Ng V, Tejomurthula S, Zhang Y, Grigoriev IV, Peng M, de Vries RP. Comparative Genomics and Transcriptomics Analyses Reveal Divergent Plant Biomass-Degrading Strategies in Fungi. J Fungi (Basel) 2023; 9:860. [PMID: 37623631 PMCID: PMC10455118 DOI: 10.3390/jof9080860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Plant biomass is one of the most abundant renewable carbon sources, which holds great potential for replacing current fossil-based production of fuels and chemicals. In nature, fungi can efficiently degrade plant polysaccharides by secreting a broad range of carbohydrate-active enzymes (CAZymes), such as cellulases, hemicellulases, and pectinases. Due to the crucial role of plant biomass-degrading (PBD) CAZymes in fungal growth and related biotechnology applications, investigation of their genomic diversity and transcriptional dynamics has attracted increasing attention. In this project, we systematically compared the genome content of PBD CAZymes in six taxonomically distant species, Aspergillus niger, Aspergillus nidulans, Penicillium subrubescens, Trichoderma reesei, Phanerochaete chrysosporium, and Dichomitus squalens, as well as their transcriptome profiles during growth on nine monosaccharides. Considerable genomic variation and remarkable transcriptomic diversity of CAZymes were identified, implying the preferred carbon source of these fungi and their different methods of transcription regulation. In addition, the specific carbon utilization ability inferred from genomics and transcriptomics was compared with fungal growth profiles on corresponding sugars, to improve our understanding of the conversion process. This study enhances our understanding of genomic and transcriptomic diversity of fungal plant polysaccharide-degrading enzymes and provides new insights into designing enzyme mixtures and metabolic engineering of fungi for related industrial applications.
Collapse
Affiliation(s)
- Jiajia Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (J.L.); (M.P.)
| | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (J.L.); (M.P.)
| | - Anna Lipzen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA; (A.L.); (V.N.); (S.T.); (Y.Z.); (I.V.G.)
| | - Vivian Ng
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA; (A.L.); (V.N.); (S.T.); (Y.Z.); (I.V.G.)
| | - Sravanthi Tejomurthula
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA; (A.L.); (V.N.); (S.T.); (Y.Z.); (I.V.G.)
| | - Yu Zhang
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA; (A.L.); (V.N.); (S.T.); (Y.Z.); (I.V.G.)
| | - Igor V. Grigoriev
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA; (A.L.); (V.N.); (S.T.); (Y.Z.); (I.V.G.)
- Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (J.L.); (M.P.)
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (J.L.); (M.P.)
| |
Collapse
|
3
|
Méndez-Líter JA, de Eugenio LI, Nieto-Domínguez M, Prieto A, Martínez MJ. Expression and Characterization of Two α-l-Arabinofuranosidases from Talaromyces amestolkiae: Role of These Enzymes in Biomass Valorization. Int J Mol Sci 2023; 24:11997. [PMID: 37569374 PMCID: PMC10418624 DOI: 10.3390/ijms241511997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
α-l-arabinofuranosidases are glycosyl hydrolases that catalyze the break between α-l-arabinofuranosyl substituents or between α-l-arabinofuranosides and xylose from xylan or xylooligosaccharide backbones. While they belong to several glycosyl hydrolase (GH) families, there are only 24 characterized GH62 arabinofuranosidases, making them a small and underrepresented group, with many of their features remaining unknown. Aside from their applications in the food industry, arabinofuranosidases can also aid in the processing of complex lignocellulosic materials, where cellulose, hemicelluloses, and lignin are closely linked. These materials can be fully converted into sugar monomers to produce secondary products like second-generation bioethanol. Alternatively, they can be partially hydrolyzed to release xylooligosaccharides, which have prebiotic properties. While endoxylanases and β-xylosidases are also necessary to fully break down the xylose backbone from xylan, these enzymes are limited when it comes to branched polysaccharides. In this article, two new GH62 α-l-arabinofuranosidases from Talaromyces amestolkiae (named ARA1 and ARA-2) have been heterologously expressed and characterized. ARA-1 is more sensitive to changes in pH and temperature, whereas ARA-2 is a robust enzyme with wide pH and temperature tolerance. Both enzymes preferentially act on arabinoxylan over arabinan, although ARA-1 has twice the catalytic efficiency of ARA-2 on this substrate. The production of xylooligosaccharides from arabinoxylan catalyzed by a T. amestolkiae endoxylanase was significantly increased upon pretreatment of the polysaccharide with ARA-1 or ARA-2, with the highest synergism values reported to date. Finally, both enzymes (ARA-1 or ARA-2 and endoxylanase) were successfully applied to enhance saccharification by combining them with a β-xylosidase already characterized from the same fungus.
Collapse
Affiliation(s)
- Juan A. Méndez-Líter
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| | - Laura I. de Eugenio
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Alicia Prieto
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| | - María Jesús Martínez
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| |
Collapse
|
4
|
Leschonski KP, Kaasgaard SG, Spodsberg N, Krogh KBRM, Kabel MA. Two Subgroups within the GH43_36 α-l-Arabinofuranosidase Subfamily Hydrolyze Arabinosyl from Either Mono-or Disubstituted Xylosyl Units in Wheat Arabinoxylan. Int J Mol Sci 2022; 23:ijms232213790. [PMID: 36430284 PMCID: PMC9693073 DOI: 10.3390/ijms232213790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Fungal arabinofuranosidases (ABFs) catalyze the hydrolysis of arabinosyl substituents (Ara) and are key in the interplay with other glycosyl hydrolases to saccharify arabinoxylans (AXs). Most characterized ABFs belong to GH51 and GH62 and are known to hydrolyze the linkage of α-(1→2)-Ara and α-(1→3)-Ara in monosubstituted xylosyl residues (Xyl) (ABF-m2,3). Nevertheless, in AX a substantial number of Xyls have two Aras (i.e., disubstituted), which are unaffected by ABFs from GH51 and GH62. To date, only two fungal enzymes have been identified (in GH43_36) that specifically release the α-(1→3)-Ara from disubstituted Xyls (ABF-d3). In our research, phylogenetic analysis of available GH43_36 sequences revealed two major clades (GH43_36a and GH43_36b) with an expected substrate specificity difference. The characterized fungal ABF-d3 enzymes aligned with GH43_36a, including the GH43_36 from Humicola insolens (HiABF43_36a). Hereto, the first fungal GH43_36b (from Talaromyces pinophilus) was cloned, purified, and characterized (TpABF43_36b). Surprisingly, TpABF43_36b was found to be active as ABF-m2,3, albeit with a relatively low rate compared to other ABFs tested, and showed minor xylanase activity. Novel specificities were also discovered for the HiABF43_36a, as it also released α-(1→2)-Ara from a disubstitution on the non-reducing end of an arabinoxylooligosaccharide (AXOS), and it was active to a lesser extent as an ABF-m2,3 towards AXOS when the Ara was on the second xylosyl from the non-reducing end. In essence, this work adds new insights into the biorefinery of agricultural residues.
Collapse
Affiliation(s)
| | | | | | | | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
5
|
Baudrexl M, Fida T, Berk B, Schwarz WH, Zverlov VV, Groll M, Liebl W. Biochemical and Structural Characterization of Thermostable GH159 Glycoside Hydrolases Exhibiting α-L-Arabinofuranosidase Activity. Front Mol Biosci 2022; 9:907439. [PMID: 35847984 PMCID: PMC9278983 DOI: 10.3389/fmolb.2022.907439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Functional, biochemical, and preliminary structural properties are reported for three glycoside hydrolases of the recently described glycoside hydrolase (GH) family 159. The genes were cloned from the genomic sequences of different Caldicellulosiruptor strains. This study extends the spectrum of functions of GH159 enzymes. The only activity previously reported for GH159 was hydrolytic activity on β-galactofuranosides. Activity screening using a set of para-nitrophenyl (pNP) glycosides suggested additional arabinosidase activity on substrates with arabinosyl residues, which has not been previously reported for members of GH159. Even though the thermophilic enzymes investigated-Cs_Gaf159A, Ch_Gaf159A, and Ck_Gaf159A-cleaved pNP-α-l-arabinofuranoside, they were only weakly active on arabinogalactan, and they did not cleave arabinose from arabinan, arabinoxylan, or gum arabic. However, the enzymes were able to hydrolyze the α-1,3-linkage in different arabinoxylan-derived oligosaccharides (AXOS) with arabinosylated xylose at the non-reducing end (A3X, A2,3XX), suggesting their role in the intracellular hydrolysis of oligosaccharides. Crystallization and structural analysis of the apo form of one of the Caldicellulosiruptor enzymes, Ch_Gaf159A, enabled the elucidation of the first 3D structure of a GH159 member. This work revealed a five-bladed β-propeller structure for GH159 enzymes. The 3D structure and its substrate-binding pocket also provides an explanation at the molecular level for the observed exo-activity of the enzyme. Furthermore, the structural data enabled the prediction of the catalytic amino acids. This was supported by the complete inactivation by mutation of residues D19, D142, and E190 of Ch_Gaf159A.
Collapse
Affiliation(s)
- Melanie Baudrexl
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Tarik Fida
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Berkay Berk
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | | | - Vladimir V. Zverlov
- Chair of Microbiology, Technical University of Munich, Freising, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russia
| | - Michael Groll
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Garching, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Li X, Kouzounis D, Kabel MA, de Vries RP. GH10 and GH11 endoxylanases in Penicillium subrubescens: comparative characterization and synergy with GH51, GH54, GH62 α-L-arabinofuranosidases from the same fungus. N Biotechnol 2022; 70:84-92. [PMID: 35597447 DOI: 10.1016/j.nbt.2022.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/25/2022]
Abstract
Penicillium subrubescens has an expanded set of genes encoding putative endoxylanases (PsXLNs) compared to most other Penicillia and other fungi. In this study, all GH10 and GH11 PsXLNs were produced heterologously in Pichia pastoris and characterized. They were active towards beech wood xylan (BWX) and wheat flour arabinoxylan (WAX), and showed stability over a wide pH range. Additionally, PsXLNs released distinct oligosaccharides from WAX, and showed significant cooperative action with P. subrubescens α-L-arabinofuranosidases (PsABFs) from GH51 or GH54 for WAX degradation, giving insight into a more diverse XLN and ABF system for the efficient degradation of complex hemicelluloses. Homology modelling analysis pointed out differences in the catalytic center of PsXLNs, which are discussed in view of the different modes of action observed. These findings facilitate understanding of structural requirements for substrate recognition to contribute to recombinant XLN engineering for biotechnological applications.
Collapse
Affiliation(s)
- Xinxin Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|