1
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Chen X, Liu X, Gan X, Li S, Ma H, Zhang L, Wang P, Li Y, Huang T, Yang X, Fang L, Liang Y, Wu J, Chen T, Zhou Z, Liu X, Guo J. Differential regulation of phosphorylation, structure and stability of circadian clock protein FRQ isoforms. J Biol Chem 2023; 299:104597. [PMID: 36898580 PMCID: PMC10140173 DOI: 10.1016/j.jbc.2023.104597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 03/12/2023] Open
Abstract
Neurospora crassa is an important model for circadian clock research. The Neurospora core circadian component FRQ protein has two isoforms, large FRQ (l-FRQ) and small FRQ (s-FRQ), of which l-FRQ bears an additional N-terminal 99-amino acid fragment. However, how the FRQ isoforms operate differentially in regulating the circadian clock remains elusive. Here, we show l-FRQ and s-FRQ play different roles in regulating the circadian negative feedback loop. Compared to s-FRQ, l-FRQ is less stable at three temperatures, and undergoes hypophosphorylation and faster degradation. The phosphorylation of the C-terminal l-FRQ 794-aa fragment was markedly higher than that of s-FRQ, suggesting the l-FRQ N-terminal 99-aa region may regulate phosphorylation of the entire FRQ protein. Quantitative label-free LC/MS analysis identified several peptides that were differentially phosphorylated between l-FRQ and s-FRQ, which were distributed in FRQ in an interlaced fashion. Furthermore, we identified two novel phosphorylation sites, S765 and T781; mutations S765A and T781A showed no significant effects on conidiation rhythmicity, although T781 conferred FRQ stability. These findings demonstrate that FRQ isoforms play differential roles in the circadian negative feedback loop and undergo different regulation of phosphorylation, structure, and stability. The l-FRQ N-terminal 99-aa region plays an important role in regulating the phosphorylation, stability, conformation, and function of the FRQ protein. As the FRQ circadian clock counterparts in other species also have isoforms or paralogues, these findings will also further our understanding of the underlying regulatory mechanisms of the circadian clock in other organisms based on the high conservation of circadian clocks in eukaryotes.
Collapse
Affiliation(s)
- Xianyun Chen
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaolan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xihui Gan
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Silin Li
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huan Ma
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiliang Wang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yunzhen Li
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianyu Huang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaolin Yang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Fang
- Sun Yat-sen University Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingying Liang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tongyue Chen
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zengxuan Zhou
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinhu Guo
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Wang B, Stevenson EL, Dunlap JC. Functional analysis of 110 phosphorylation sites on the circadian clock protein FRQ identifies clusters determining period length and temperature compensation. G3 (BETHESDA, MD.) 2023; 13:jkac334. [PMID: 36537198 PMCID: PMC9911066 DOI: 10.1093/g3journal/jkac334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/13/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In the negative feedback loop driving the Neurospora circadian oscillator, the negative element, FREQUENCY (FRQ), inhibits its own expression by promoting phosphorylation of its heterodimeric transcriptional activators, White Collar-1 (WC-1) and WC-2. FRQ itself also undergoes extensive time-of-day-specific phosphorylation with over 100 phosphosites previously documented. Although disrupting individual or certain clusters of phosphorylation sites has been shown to alter circadian period lengths to some extent, it is still elusive how all the phosphorylations on FRQ control its activity. In this study, we systematically investigated the role in period determination of all 110 reported FRQ phosphorylation sites, using mutagenesis and luciferase reporter assays. Surprisingly, robust FRQ phosphorylation is still detected even when 84 phosphosites were eliminated altogether; further mutating another 26 phosphoresidues completely abolished FRQ phosphorylation. To identify phosphoresidue(s) on FRQ impacting circadian period length, a series of clustered frq phosphomutants covering all the 110 phosphosites were generated and examined for period changes. When phosphosites in the N-terminal and middle regions of FRQ were eliminated, longer periods were typically seen while removal of phosphorylation in the C-terminal tail resulted in extremely short periods, among the shortest reported. Interestingly, abolishing the 11 phosphosites in the C-terminal tail of FRQ not only results in an extremely short period, but also impacts temperature compensation (TC), yielding an overcompensated circadian oscillator. In addition, the few phosphosites in the middle of FRQ are also found to be crucial for TC. When different groups of FRQ phosphomutations were combined intramolecularly, expected additive effects were generally observed except for one novel case of intramolecular epistasis, where arrhythmicity resulting from one cluster of phosphorylation site mutants was restored by eliminating phosphorylation at another group of sites.
Collapse
Affiliation(s)
- Bin Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Elizabeth-Lauren Stevenson
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|