1
|
Uddin MR, Khaniya U, Gupta C, Mao J, Ranepura GA, Wei RJ, Ortiz-Soto J, Singharoy A, Gunner MR. Finding the E-channel proton loading sites by calculating the ensemble of protonation microstates. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149518. [PMID: 39442784 DOI: 10.1016/j.bbabio.2024.149518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The aerobic electron transfer chain builds a proton gradient by proton coupled electron transfer reactions through a series of proteins. Complex I is the first enzyme in the sequence. Here transfer of two electrons from NADH to quinone yields four protons pumped from the membrane N- (negative, higher pH) side to the P- (positive, lower pH) side. Protons move through three linear antiporter paths, with a few amino acids and waters providing the route; and through the E-channel, a complex of competing paths, with clusters of interconnected protonatable residues. Proton loading sites (PLS) transiently bind protons as they are transported from N- to P-compartments. PLS can be individual residues or extended clusters of residues. The program MCCE uses Monte Carlos sampling to analyze the E-channel proton binding in equilibrium with individual Molecular Dynamics snapshots from trajectories of Thermus thermuphillus Complex I in the apo, quinone and quinol bound states. At pH 7, the five E-channel subunits (Nqo4, Nqo7, Nqo8, Nqo10, and Nqo11) take >25,000 protonation microstates, each with different residues protonated. The microstate explosion is tamed by analyzing interconnected clusters of residues along the proton transfer paths. A proton is bound and released from a cluster of five coupled residues on the protein N-side and to six coupled residues in the protein center. Loaded microstates bind protons to sites closer to the P-side in the forward pumping direction. MCCE microstate analysis identifies strongly coupled proton binding amongst individual residues in the two PLS clusters.
Collapse
Affiliation(s)
- Md Raihan Uddin
- Department of Physics, The City College of New York, NY 10031, USA; Graduate Program In Biochemistry, The Graduate Center of CUNY, 365 5th Avenue, NY 10031, USA
| | - Umesh Khaniya
- National Cancer Institute, NIH, Bethesda, MD 20814, USA; Ph.D. Program in Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Chitrak Gupta
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Bio-design Institute, Arizona State University, Tempe, AZ, USA
| | - Junjun Mao
- Department of Physics, The City College of New York, NY 10031, USA
| | - Gehan A Ranepura
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Rongmei Judy Wei
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York 10016, USA
| | - Jose Ortiz-Soto
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York 10016, USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Bio-design Institute, Arizona State University, Tempe, AZ, USA
| | - M R Gunner
- Department of Physics, The City College of New York, NY 10031, USA; Graduate Program In Biochemistry, The Graduate Center of CUNY, 365 5th Avenue, NY 10031, USA.
| |
Collapse
|
2
|
Wang P, Demaray J, Moroz S, Stuchebrukhov AA. Searching for proton transfer channels in respiratory complex I. Biophys J 2024; 123:4233-4244. [PMID: 39095988 PMCID: PMC11700350 DOI: 10.1016/j.bpj.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/19/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
We have explored a strategy to identify potential proton transfer channels using computational analysis of a protein structure based on Voronoi partitioning and applied it for the analysis of proton transfer pathways in redox-driven proton-pumping respiratory complex I. The analysis results in a network of connected voids/channels, which represent the dual structure of the protein; we then hydrated the identified channels using our water placement program Dowser++. Many theoretical water molecules found in the channels perfectly match the observed experimental water molecules in the structure; some other predicted water molecules have not been resolved in the experiments. The channels are of varying cross sections. Some channels are big enough to accommodate water molecules that are suitable to conduct protons; others are too narrow to hold water but require only minor conformational changes to accommodate proton transfer. We provide a preliminary analysis of the proton conductivity of the network channels, classifying the proton transfer channels as open, closed, and partially open, and discuss possible conformational changes that can modulate, i.e., open and close, the channels.
Collapse
Affiliation(s)
- Panyue Wang
- Department of Chemistry, University of California at Davis, Davis, California
| | - Jackson Demaray
- Department of Chemistry, University of California at Davis, Davis, California
| | - Stanislav Moroz
- Department of Chemistry, University of California at Davis, Davis, California
| | | |
Collapse
|
3
|
Beghiah A, Saura P, Badolato S, Kim H, Zipf J, Auman D, Gamiz-Hernandez AP, Berg J, Kemp G, Kaila VRI. Dissected antiporter modules establish minimal proton-conduction elements of the respiratory complex I. Nat Commun 2024; 15:9098. [PMID: 39438463 PMCID: PMC11496545 DOI: 10.1038/s41467-024-53194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The respiratory Complex I is a highly intricate redox-driven proton pump that powers oxidative phosphorylation across all domains of life. Yet, despite major efforts in recent decades, its long-range energy transduction principles remain highly debated. We create here minimal proton-conducting membrane modules by engineering and dissecting the key elements of the bacterial Complex I. By combining biophysical, biochemical, and computational experiments, we show that the isolated antiporter-like modules of Complex I comprise all functional elements required for conducting protons across proteoliposome membranes. We find that the rate of proton conduction is controlled by conformational changes of buried ion-pairs that modulate the reaction barriers by electric field effects. The proton conduction is also modulated by bulky residues along the proton channels that are key for establishing a tightly coupled proton pumping machinery in Complex I. Our findings provide direct experimental evidence that the individual antiporter modules are responsible for the proton transport activity of Complex I. On a general level, our findings highlight electrostatic and conformational coupling mechanisms in the modular energy-transduction machinery of Complex I with distinct similarities to other enzymes.
Collapse
Affiliation(s)
- Adel Beghiah
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Sofia Badolato
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Hyunho Kim
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Johanna Zipf
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Dirk Auman
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Johan Berg
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Grant Kemp
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
4
|
Djurabekova A, Lasham J, Zdorevskyi O, Zickermann V, Sharma V. Long-range electron proton coupling in respiratory complex I - insights from molecular simulations of the quinone chamber and antiporter-like subunits. Biochem J 2024; 481:499-514. [PMID: 38572757 DOI: 10.1042/bcj20240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Respiratory complex I is a redox-driven proton pump. Several high-resolution structures of complex I have been determined providing important information about the putative proton transfer paths and conformational transitions that may occur during catalysis. However, how redox energy is coupled to the pumping of protons remains unclear. In this article, we review biochemical, structural and molecular simulation data on complex I and discuss several coupling models, including the key unresolved mechanistic questions. Focusing both on the quinone-reductase domain as well as the proton-pumping membrane-bound domain of complex I, we discuss a molecular mechanism of proton pumping that satisfies most experimental and theoretical constraints. We suggest that protonation reactions play an important role not only in catalysis, but also in the physiologically-relevant active/deactive transition of complex I.
Collapse
Affiliation(s)
| | - Jonathan Lasham
- Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Kim H, Saura P, Pöverlein MC, Gamiz-Hernandez AP, Kaila VRI. Quinone Catalysis Modulates Proton Transfer Reactions in the Membrane Domain of Respiratory Complex I. J Am Chem Soc 2023; 145:17075-17086. [PMID: 37490414 PMCID: PMC10416309 DOI: 10.1021/jacs.3c03086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 07/27/2023]
Abstract
Complex I is a redox-driven proton pump that drives electron transport chains and powers oxidative phosphorylation across all domains of life. Yet, despite recently resolved structures from multiple organisms, it still remains unclear how the redox reactions in Complex I trigger proton pumping up to 200 Å away from the active site. Here, we show that the proton-coupled electron transfer reactions during quinone reduction drive long-range conformational changes of conserved loops and trans-membrane (TM) helices in the membrane domain of Complex I from Yarrowia lipolytica. We find that the conformational switching triggers a π → α transition in a TM helix (TM3ND6) and establishes a proton pathway between the quinone chamber and the antiporter-like subunits, responsible for proton pumping. Our large-scale (>20 μs) atomistic molecular dynamics (MD) simulations in combination with quantum/classical (QM/MM) free energy calculations show that the helix transition controls the barrier for proton transfer reactions by wetting transitions and electrostatic effects. The conformational switching is enabled by re-arrangements of ion pairs that propagate from the quinone binding site to the membrane domain via an extended network of conserved residues. We find that these redox-driven changes create a conserved coupling network within the Complex I superfamily, with point mutations leading to drastic activity changes and mitochondrial disorders. On a general level, our findings illustrate how catalysis controls large-scale protein conformational changes and enables ion transport across biological membranes.
Collapse
Affiliation(s)
- Hyunho Kim
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | | | - Ana P. Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
6
|
Grba DN, Chung I, Bridges HR, Agip ANA, Hirst J. Investigation of hydrated channels and proton pathways in a high-resolution cryo-EM structure of mammalian complex I. SCIENCE ADVANCES 2023; 9:eadi1359. [PMID: 37531432 PMCID: PMC10396290 DOI: 10.1126/sciadv.adi1359] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Respiratory complex I, a key enzyme in mammalian metabolism, captures the energy released by reduction of ubiquinone by NADH to drive protons across the inner mitochondrial membrane, generating the proton-motive force for ATP synthesis. Despite remarkable advances in structural knowledge of this complicated membrane-bound enzyme, its mechanism of catalysis remains controversial. In particular, how ubiquinone reduction is coupled to proton pumping and the pathways and mechanisms of proton translocation are contested. We present a 2.4-Å resolution cryo-EM structure of complex I from mouse heart mitochondria in the closed, active (ready-to-go) resting state, with 2945 water molecules modeled. By analyzing the networks of charged and polar residues and water molecules present, we evaluate candidate pathways for proton transfer through the enzyme, for the chemical protons for ubiquinone reduction, and for the protons transported across the membrane. Last, we compare our data to the predictions of extant mechanistic models, and identify key questions to answer in future work to test them.
Collapse
|