1
|
Vitiello A, Reale A, Conciatori V, Vicco A, Garzino-Demo A, Palù G, Parolin C, von Einem J, Calistri A. Simultaneous Expression of Different Therapeutic Genes by Infection with Multiple Oncolytic HSV-1 Vectors. Biomedicines 2024; 12:1577. [PMID: 39062150 PMCID: PMC11274547 DOI: 10.3390/biomedicines12071577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Oncolytic viruses (OVs) are anti-cancer therapeutics combining the selective killing of cancer cells with the triggering of an anti-tumoral immune response. The latter effect can be improved by arming OVs with immunomodulatory factors. Due to the heterogeneity of cancer and the tumor microenvironment, it is anticipated that strategies based on the co-expression of multiple therapeutic molecules that interfere with different features of the target malignancy will be more effective than mono-therapies. Here, we show that (i) the simultaneous expression of different proteins in triple-negative breast cancer (TNBC) cells can be achieved through their infection with a combination of OVs based on herpes simplex virus type 1 (oHSV1), each encoding a single transgene. (ii) The level of expressed proteins is dependent on the number of infectious viral particles utilized to challenge tumor cells. (iii) All recombinant viruses exhibited comparable efficacy in the killing of TNBC cells in single and multiple infections and showed similar kinetics of replication. Overall, our results suggest that a strategy based on co-infection with a panel of oHSV1s may represent a promising combinatorial therapeutic approach for TNBC, as well as for other types of solid tumors, that merits further investigation in more advanced in vitro and in vivo models.
Collapse
Affiliation(s)
- Adriana Vitiello
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
| | - Alberto Reale
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
| | - Valeria Conciatori
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
| | - Anna Vicco
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
| | - Alfredo Garzino-Demo
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
| | - Jens von Einem
- Institute for Virology, University of Ulm, 89081 Ulm, Germany
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.V.); (A.R.); (V.C.); (A.V.); (A.G.-D.); (G.P.); (C.P.)
| |
Collapse
|
2
|
Al-Shalan HAM, Hu D, Wang P, Uddin J, Chopra A, Greene WK, Ma B. Transcriptomic Profiling of Influenza A Virus-Infected Mouse Lung at Recovery Stage Using RNA Sequencing. Viruses 2023; 15:2198. [PMID: 38005876 PMCID: PMC10675624 DOI: 10.3390/v15112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Influenza A virus (IAV) is known to cause mild to severe respiratory illness. Under some conditions, the infection can lead to pneumonia (viral or bacterial), acute respiratory distress syndrome, and other complications that can be fatal, especially in vulnerable populations such as the elderly, young children, and individuals with underlying health conditions. Despite previous studies, little is known about the host immune response and neuroimmune interactions in IAV infection. Using RNA sequencing, we performed transcriptomic analysis of murine lung tissue 21 days post infection (dpi) with IAV (H1N1) in order to find the differentially expression genes (DEGs) related to the host immune response and neuroimmune interactions inside the lung during recovery. Among 792 DEGs, 434 genes were up-regulated, whereas 358 genes were down-regulated. The most prominent molecular functions of the up-regulated genes were related to the immune response and tissue repair, whereas a large proportion of the down-regulated genes were associated with neural functions. Although further molecular/functional studies need to be performed for these DEGs, our results facilitate the understanding of the host response (from innate immunity to adaptive immunity) and neuroimmune interactions in infected lungs at the recovery stage of IAV infection. These genes might have potential uses as mechanistic/diagnostic biomarkers and represent possible targets for anti-IAV therapies.
Collapse
Affiliation(s)
- Huda A M Al-Shalan
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
- Department of Microbiology/Virology, College of Veterinary Medicine, Baghdad University, Baghdad 10071, Iraq
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Penghao Wang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Jasim Uddin
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Abha Chopra
- Genomics Core Research Facility, Health Futures Institute, Murdoch University, Murdoch, WA 6149, Australia
| | - Wayne K Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| |
Collapse
|
3
|
Chuang CH, Cheng TL, Chen WC, Huang YJ, Wang HE, Lo YC, Hsieh YC, Lin WW, Hsieh YJ, Ke CC, Huang KC, Lee JC, Huang MY. Micro-PET imaging of hepatitis C virus NS3/4A protease activity using a protease-activatable retention probe. Front Microbiol 2022; 13:896588. [PMID: 36406412 PMCID: PMC9672079 DOI: 10.3389/fmicb.2022.896588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/27/2022] [Indexed: 11/03/2023] Open
Abstract
Hepatitis C virus (HCV) NS3/4A protease is an attractive target for direct-acting antiviral agents. Real-time tracking of the NS3/4A protease distribution and activity is useful for clinical diagnosis and disease management. However, no approach has been developed that can systemically detect NS3/4A protease activity or distribution. We designed a protease-activatable retention probe for tracking HCV NS3/4A protease activity via positron emission topography (PET) imaging. A cell-penetrating probe was designed that consisted of a cell-penetrating Tat peptide, HCV NS3/4A protease substrate, and a hydrophilic domain. The probe was labeled by fluorescein isothiocyanate (FITC) and 124I in the hydrophilic domain to form a TAT-ΔNS3/4A-124I-FITC probe. Upon cleavage at NS3/4A substrate, the non-penetrating hydrophilic domain is released and accumulated in the cytoplasm allowing PET or optical imaging. The TAT-ΔNS3/4A-FITC probe selectively accumulated in NS3/4A-expressing HCC36 (NS3/4A-HCC36) cells/tumors and HCV-infected HCC36 cells. PET imaging showed that the TAT-ΔNS3/4A-124I-FITC probe selectively accumulated in the NS3/4A-HCC36 xenograft tumors and liver-implanted NS3/4A-HCC36 tumors, but not in the control HCC36 tumors. The TAT-ΔNS3/4A-124I-FITC probe can be used to represent NS3/4 protease activity and distribution via a clinical PET imaging system allowing. This strategy may be extended to detect any cellular protease activity for optimization the protease-based therapies.
Collapse
Affiliation(s)
- Chih-Hung Chuang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chun Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi-Jung Huang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan
| | - Yen-Chen Lo
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan
| | - Yuan-Chin Hsieh
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Wei Lin
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ju Hsieh
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chih Ke
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kang-Chieh Huang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jin-Ching Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P, Guo ZS. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer 2022; 21:196. [PMID: 36221123 PMCID: PMC9554963 DOI: 10.1186/s12943-022-01664-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Oncolytic viruses (OVs) represent a new class of multi-modal immunotherapies for cancer, with OV-elicited antitumor immunity being key to their overall therapeutic efficacy. Currently, the clinical effectiveness of OV as monotherapy remains limited, and thus investigators have been exploring various combinations with other anti-cancer agents and demonstrated improved therapeutic efficacy. As cancer cells have evolved to alter key signaling pathways for enhanced cell proliferation, cancer progression and metastasis, these cellular and molecular changes offer promising targets for rational cancer therapy design. In this regard, key molecules in relevant signaling pathways for cancer cells or/and immune cells, such as EGFR-KRAS (e.g., KRASG12C), PI3K-AKT-mTOR, ERK-MEK, JAK-STAT, p53, PD-1-PD-L1, and epigenetic, or immune pathways (e.g., histone deacetylases, cGAS-STING) are currently under investigation and have the potential to synergize with OV to modulate the immune milieu of the tumor microenvironment (TME), thereby improving and sustaining antitumor immunity. As many small molecule modulators of these signaling pathways have been developed and have shown strong therapeutic potential, here we review key findings related to both OV-mediated immunotherapy and the utility of small molecule modulators of signaling pathways in immuno-oncology. Then, we focus on discussion of the rationales and potential strategies for combining OV with selected modulators targeting key cellular signaling pathways in cancer or/and immune cells to modulate the TME and enhance antitumor immunity and therapeutic efficacy. Finally, we provide perspectives and viewpoints on the application of novel experimental systems and technologies that can propel this exciting branch of medicine into a bright future.
Collapse
Affiliation(s)
- Zhi Zhu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - A J Robert McGray
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Weijian Jiang
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
5
|
Tatli O, Dinler Doganay G. Recent Developments in Targeting RAS Downstream Effectors for RAS-Driven Cancer Therapy. Molecules 2021; 26:molecules26247561. [PMID: 34946644 PMCID: PMC8703923 DOI: 10.3390/molecules26247561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant activity of oncogenic rat sarcoma virus (RAS) protein promotes tumor growth and progression. RAS-driven cancers comprise more than 30% of all human cancers and are refractory to frontline treatment strategies. Since direct targeting of RAS has proven challenging, efforts have been centered on the exploration of inhibitors for RAS downstream effector kinases. Two major RAS downstream signaling pathways, including the Raf/MEK/Erk cascade and the phosphatidylinositol-3-kinase (PI3K) pathway, have become compelling targets for RAS-driven cancer therapy. However, the main drawback in the blockade of a single RAS effector is the multiple levels of crosstalk and compensatory mechanisms between these two pathways that contribute to drug resistance against monotherapies. A growing body of evidence reveals that the sequential or synergistic inhibition of multiple RAS effectors is a more convenient route for the efficacy of cancer therapy. Herein, we revisit the recent developments and discuss the most promising modalities targeting canonical RAS downstream effectors for the treatment of RAS-driven cancers.
Collapse
Affiliation(s)
- Ozge Tatli
- Department of Molecular Biology, Genetics-Biotechnology, Graduate School, Istanbul Technical University, Istanbul 34469, Turkey;
- Department of Molecular Biology and Genetics, Istanbul Medeniyet University, Istanbul 34720, Turkey
| | - Gizem Dinler Doganay
- Department of Molecular Biology, Genetics-Biotechnology, Graduate School, Istanbul Technical University, Istanbul 34469, Turkey;
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
- Correspondence: ; Tel.: +90-2122-857-256
| |
Collapse
|
6
|
Sun S, Liu Y, He C, Hu W, Liu W, Huang X, Wu J, Xie F, Chen C, Wang J, Lin Y, Zhu W, Yan G, Cai J, Li S. Combining NanoKnife with M1 oncolytic virus enhances anticancer activity in pancreatic cancer. Cancer Lett 2021; 502:9-24. [PMID: 33444691 DOI: 10.1016/j.canlet.2020.12.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
NanoKnife, a nonthermal ablation technique also termed irreversible electroporation (IRE), has been adopted in locally advanced pancreatic cancer (LAPC) treatment. However, reversible electroporation (RE) caused by heterogeneous electric field magnitude leads to inadequate ablation and tumor recurrence. Alphavirus M1 has been identified as a novel natural oncolytic virus which is nonpathogenic and with high tumor selectivity. This study evaluated improvements to therapeutic efficacy through combination therapy incorporating NanoKnife and M1 virus. We showed that IRE triggered reactive oxygen species (ROS)-dependent apoptosis in pancreatic cancer cells (PCCs) mediated by phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway suppression. When NanoKnife was combined with M1 virus, the therapeutic efficacy was synergistically enhanced. The combinatorial treatment further inhibited tumor proliferation and prolonged the survival of orthotopic pancreatic cancer (PC)-bearing immunocompetent mice. In depth, NanoKnife enhanced the oncolytic effect of M1 by promoting its infection. The combination turned immune-silent tumors into immune-inflamed tumors characterized by T cell activation. Clinicopathologic analysis of specific M1 oncolytic biomarkers indicated the potential of the combination regimen. The combinatorial therapy represents a promising therapeutic efficacy and may ultimately improve the prognosis of patients with LAPC.
Collapse
Affiliation(s)
- Shuxin Sun
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Yang Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Chaobin He
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Wanming Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Wenfeng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Xin Huang
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Jiali Wu
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Fengxiao Xie
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Chen Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jun Wang
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Shengping Li
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China.
| |
Collapse
|
7
|
Muhuri M, Gao G. Oncolytic Virus Alphavirus M1: A New and Promising Weapon to Fight Cancer. Hum Gene Ther 2021; 32:136-137. [PMID: 33621140 DOI: 10.1089/hum.2021.29150.mmu] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,VIDE Program
| | - Guangping Gao
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,Li Weibo Institute for Rare Diseases Research; University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
8
|
Cai J, Yan G. The Identification and Development of a Novel Oncolytic Virus: Alphavirus M1. Hum Gene Ther 2021; 32:138-149. [PMID: 33261513 DOI: 10.1089/hum.2020.271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy represents an ideal therapeutic platform for cancer in which natural or engineered viruses selectively replicate in and destroy tumor cells, whereas sparing normal cells. Oncolytic virotherapy is considered as a key contributor in modern immunotherapy. However, several challenges remain with regard to exploiting the potential of oncolytic viruses, such as the lack of biomarkers for precise treatment, the difficulty of systemic administration because of pre-existing neutralizing antibodies to popular oncolytic viral vectors in human serum and the lack of mature lyophilization technology for convenient transport and preservation of viral preparations. The M1 strain, which was isolated on Hainan Island of China in the 1960s, is a member of the alphavirus genus Togaviridae family. It was identified as a novel oncolytic virus in 2014. During the development of M1 virus, many challenges have been overcome: several biomarkers have been identified for precise treatment; systematic administration of M1 is suitable and feasible because of the extremely low percentage of pre-existing neutralizing antibodies in the general population, and a lyophilized powder that maintains high biological stability has been developed. This review provides an encyclopedia of studies supporting M1 as an oncolytic virus, including the biological characteristics, tumor selectivity and its mechanism, tumor killing mechanism, combination therapy, and nonclinical pharmacokinetics of M1 virus. The future development direction of oncolytic virus M1 is also discussed at the end of the review.
Collapse
Affiliation(s)
- Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|