1
|
Lin KT, Muneer G, Huang PR, Chen CS, Chen YJ. Mass Spectrometry-Based Proteomics for Next-Generation Precision Oncology. MASS SPECTROMETRY REVIEWS 2025. [PMID: 40269546 DOI: 10.1002/mas.21932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Cancer is the leading cause of death worldwide characterized by patient heterogeneity and complex tumor microenvironment. While the genomics-based testing has transformed modern medicine, the challenge of diverse clinical outcomes highlights unmet needs for precision oncology. As functional molecules regulating cellular processes, proteins hold great promise as biomarkers and drug targets. Mass spectrometry (MS)-based clinical proteomics has illuminated the molecular features of cancers and facilitated discovery of biomarkers or therapeutic targets, paving the way for innovative strategies that enhance the precision of personalized treatment. In this article, we introduced the tools and current achievements of MS-based proteomics, choice of discovery and targeted MS from discovery to validation phases, profiling sensitivity from bulk samples to single-cell level and tissue to liquid biopsy specimens, current regulatory landscape of MS-based protein laboratory-developed tests (LDTs). The challenges, success and future perspectives in translating research MS assay into clinical applications are also discussed. With well-designed validation studies to demonstrate clinical benefits and meet the regulatory requirements for both analytical and clinical performance, the future of MS-based assays is promising with numerous opportunities to improve cancer diagnosis, treatment, and monitoring.
Collapse
Affiliation(s)
- Kuen-Tyng Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gul Muneer
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Ciao-Syuan Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Ntzifa A, Marras T, Georgoulias V, Lianidou E. Liquid biopsy for the management of NSCLC patients under osimertinib treatment. Crit Rev Clin Lab Sci 2024; 61:347-369. [PMID: 38305080 DOI: 10.1080/10408363.2024.2302116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Therapeutic management of NSCLC patients is quite challenging as they are mainly diagnosed at a late stage of disease, and they present a high heterogeneous molecular profile. Osimertinib changed the paradigm shift in treatment of EGFR mutant NSCLC patients achieving significantly better clinical outcomes. To date, osimertinib is successfully administered not only as first- or second-line treatment, but also as adjuvant treatment while its efficacy is currently investigated during neoadjuvant treatment or in stage III, unresectable EGFR mutant NSCLC patients. However, resistance to osimertinib may occur due to clonal evolution, under the pressure of the targeted therapy. The utilization of liquid biopsy as a minimally invasive tool provides insight into molecular heterogeneity of tumor clonal evolution and potent resistance mechanisms which may help to develop more suitable therapeutic approaches. Longitudinal monitoring of NSCLC patients through ctDNA or CTC analysis could reveal valuable information about clinical outcomes during osimertinib treatment. Therefore, several guidelines suggest that liquid biopsy in addition to tissue biopsy should be considered as a standard of care in the advanced NSCLC setting. This practice could significantly increase the number of NSCLC patients that will eventually benefit from targeted therapies, such as EGFR TKIs.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Marras
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilis Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital of Athens, Cholargos, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Restrepo JC, Martínez Guevara D, Pareja López A, Montenegro Palacios JF, Liscano Y. Identification and Application of Emerging Biomarkers in Treatment of Non-Small-Cell Lung Cancer: Systematic Review. Cancers (Basel) 2024; 16:2338. [PMID: 39001401 PMCID: PMC11240412 DOI: 10.3390/cancers16132338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Non-small-cell lung cancer (NSCLC) comprises approximately 85% of all lung cancer cases, often diagnosed at advanced stages, which diminishes the effective treatment options and survival rates. This systematic review assesses the utility of emerging biomarkers-circulating tumor DNA (ctDNA), microRNAs (miRNAs), and the blood tumor mutational burden (bTMB)-enhanced by next-generation sequencing (NGS) to improve the diagnostic accuracy, prognostic evaluation, and treatment strategies in NSCLC. Analyzing data from 37 studies involving 10,332 patients from 2020 to 2024, the review highlights how biomarkers like ctDNA and PD-L1 expression critically inform the selection of personalized therapies, particularly beneficial in the advanced stages of NSCLC. These biomarkers are critical for prognostic assessments and in dynamically adapting treatment plans, where high PD-L1 expression and specific genetic mutations (e.g., ALK fusions, EGFR mutations) significantly guide the use of targeted therapies and immunotherapies. The findings recommend integrating these biomarkers into standardized clinical pathways to maximize their potential in enhancing the treatment precision, ultimately fostering significant advancements in oncology and improving patient outcomes and quality of life. This review substantiates the prognostic and predictive value of these biomarkers and emphasizes the need for ongoing innovation in biomarker research.
Collapse
Affiliation(s)
- Juan Carlos Restrepo
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Darly Martínez Guevara
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Andrés Pareja López
- Grupo de Investigación Unidad de Toxicidad In Vitro-UTi, Facultad de Ciencias, Universidad CES, Medellin 050021, Colombia
| | | | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| |
Collapse
|
4
|
Yamaguchi O, Kasahara N, Soda H, Imai H, Naruse I, Yamaguchi H, Itai M, Taguchi K, Uchida M, Sunaga N, Maeno T, Minato K, Tomono H, Ogawara D, Mukae H, Miura Y, Shiono A, Mouri A, Kagamu H, Kaira K. Predictive significance of circulating tumor DNA against patients with T790M-positive EGFR-mutant NSCLC receiving osimertinib. Sci Rep 2023; 13:20848. [PMID: 38012343 PMCID: PMC10682450 DOI: 10.1038/s41598-023-48210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 11/23/2023] [Indexed: 11/29/2023] Open
Abstract
Circulating tumor DNA (ctDNA) provides molecular information on tumor heterogeneity. The prognostic usefulness of ctDNA after first-line epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are limited. Therefore, the present study evaluated ctDNA during osimertinib administration as a second-line or more setting to identify the relationship between EGFR mutation levels and outcomes in patients with advanced non-small cell lung cancer (NSCLC). Forty patients with EGFR T790M-positive NSCLC receiving osimertinib after prior EGFR-TKI treatment were registered. Plasma samples were collected at osimertinib pretreatment, after 1 month of treatment, and at the time of progressive disease (PD). ctDNA analysis was performed by digital polymerase chain reaction. The detection rate of copy numbers of exon 19 deletion, L858R, and T790M in plasma samples was significantly lower 1 month after osimertinib than at pretreatment, and significantly higher at PD than at 1 month, whereas that of C797S was significantly higher at PD than at 1 month. No statistically significant difference was observed in the copy numbers of exon 19 deletion, L858R, T790M, and C797S between complete response or partial response and stable disease or PD. The detection of T790M at PD after osimertinib initiation was a significant independent prognostic factor for predicting shorter prognosis, and the presence of major EGFR mutations at pretreatment and PD was closely linked to worse survival after osimertinib initiation. Molecular testing based on ctDNA is helpful for predicting outcomes of osimertinib treatment in T790M-positive NSCLC after previous EGFR-TKI treatment.
Collapse
Affiliation(s)
- Ou Yamaguchi
- Department of Respiratory Medicine, International Medical Center, Comprehensive Cancer Center, Saitama Medical University, 1397-1 Yamane, Hidaka-City, Saitama, 350-1298, Japan
| | - Norimitsu Kasahara
- Innovative Medical Research Center, Gunma University Hospital, 3-39-15, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Hiroshi Soda
- Department of Respiratory Medicine, Sasebo City General Hospital, Nagasaki, Japan
| | - Hisao Imai
- Department of Respiratory Medicine, International Medical Center, Comprehensive Cancer Center, Saitama Medical University, 1397-1 Yamane, Hidaka-City, Saitama, 350-1298, Japan
- Division of Respiratory Medicine, Gunma Prefectural Cancer Center, Ota, Japan
| | - Ichiro Naruse
- Department of Respiratory Medicine, Hidaka Hospital, Kagoshima, Japan
| | - Hiroyuki Yamaguchi
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Miki Itai
- Department of Respiratory Medicine, Takasaki General Medical Center, Takasaki, Japan
| | - Kohei Taguchi
- Department of Respiratory Medicine, Takasaki General Medical Center, Takasaki, Japan
| | - Megumi Uchida
- Department of Respiratory Medicine, Takasaki General Medical Center, Takasaki, Japan
| | - Noriaki Sunaga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Toshitaka Maeno
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koichi Minato
- Division of Respiratory Medicine, Gunma Prefectural Cancer Center, Ota, Japan
| | - Hiromi Tomono
- Department of Respiratory Medicine, Sasebo City General Hospital, Nagasaki, Japan
| | - Daiki Ogawara
- Department of Respiratory Medicine, Sasebo City General Hospital, Nagasaki, Japan
- Department of Respiratory Medicine, Fukuoka Wajiro Hospital, Fukuoka, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yu Miura
- Department of Respiratory Medicine, International Medical Center, Comprehensive Cancer Center, Saitama Medical University, 1397-1 Yamane, Hidaka-City, Saitama, 350-1298, Japan
| | - Ayako Shiono
- Department of Respiratory Medicine, International Medical Center, Comprehensive Cancer Center, Saitama Medical University, 1397-1 Yamane, Hidaka-City, Saitama, 350-1298, Japan
| | - Atsuto Mouri
- Department of Respiratory Medicine, International Medical Center, Comprehensive Cancer Center, Saitama Medical University, 1397-1 Yamane, Hidaka-City, Saitama, 350-1298, Japan
| | - Hiroshi Kagamu
- Department of Respiratory Medicine, International Medical Center, Comprehensive Cancer Center, Saitama Medical University, 1397-1 Yamane, Hidaka-City, Saitama, 350-1298, Japan
| | - Kyoichi Kaira
- Department of Respiratory Medicine, International Medical Center, Comprehensive Cancer Center, Saitama Medical University, 1397-1 Yamane, Hidaka-City, Saitama, 350-1298, Japan.
| |
Collapse
|
5
|
Ang YLE, Zhao X, Reungwetwattana T, Cho BC, Liao BC, Yeung R, Loong HH, Kim DW, Yang JCH, Lim SM, Ahn MJ, Lee SH, Suwatanapongched T, Kongchauy K, Ou Q, Yu R, Tai BC, Goh BC, Mok TSK, Soo RA. A Phase II Study of Osimertinib in Patients with Advanced-Stage Non-Small Cell Lung Cancer following Prior Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR TKI) Therapy with EGFR and T790M Mutations Detected in Plasma Circulating Tumour DNA (PLASMA Study). Cancers (Basel) 2023; 15:4999. [PMID: 37894366 PMCID: PMC10605750 DOI: 10.3390/cancers15204999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 10/29/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) T790M mutations drive resistance in 50% of patients with advanced non-small cell lung cancer (NSCLC) who progress on first/second generation (1G/2G) EGFR tyrosine kinase inhibitors (TKIs) and are sensitive to Osimertinib. Tissue sampling is the gold-standard modality of T790M testing, but it is invasive. We evaluated the efficacy of Osimertinib in patients with EGFR mutant NSCLC and T790M in circulating tumour DNA (ctDNA). PLASMA is a prospective, open-label, multicentre single-arm Phase II study. Patients with advanced NSCLC harbouring sensitizing EGFR and T790M mutations in plasma at progression from ≥one 1G/2G TKI were treated with 80 mg of Osimertinib daily until progression. The primary endpoint was the objective response rate (ORR); the secondary endpoints included progression-free survival (PFS), overall survival (OS), disease control rate (DCR) and toxicities. Plasma next-generation sequencing was performed to determine Osimertinib resistance mechanisms and assess serial ctDNA. A total of 110 patients from eight centres in five countries were enrolled from 2017 to 2019. The median follow-up duration was 2.64 (IQR 2.44-3.12) years. The ORR was 50.9% (95% CI 41.2-60.6) and the DCR was 84.5% (95% CI 76.4-90.7). Median PFS was 7.4 (95% CI 6.0-9.3) months; median OS was 1.63 (95% CI 1.35-2.16) years. Of all of the patients, 76% had treatment-related adverse events (TRAEs), most commonly paronychia (22.7%); 11% experienced ≥ Grade 3 TRAEs. The ctDNA baseline load and dynamics were prognostic. Osimertinib is active in NSCLC harbouring sensitizing EGFR and T790M mutations in ctDNA testing post 1G/2G TKIs.
Collapse
Affiliation(s)
- Yvonne L. E. Ang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119074, Singapore
| | - Xiaotian Zhao
- Geneseeq Research Institute, Geneseeq Technology Inc., Nanjing 210032, China
| | - Thanyanan Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Byoung-Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Bin-Chi Liao
- Department of Oncology, National Taiwan University Hospital, Taipei 100229, Taiwan
- National Taiwan University Cancer Center, Taipei 100229, Taiwan
| | - Rebecca Yeung
- Clinical Oncology Department, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
| | - Herbert H. Loong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Central Ave, Hong Kong
| | - Dong-Wan Kim
- Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - James Chih-Hsin Yang
- Department of Oncology, National Taiwan University Hospital, Taipei 100229, Taiwan
- National Taiwan University Cancer Center, Taipei 100229, Taiwan
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Myung-Ju Ahn
- Division of Haematology-Oncology, Samsung Medical Center, Seoul 06351, Republic of Korea; (M.-J.A.); (S.-H.L.)
| | - Se-Hoon Lee
- Division of Haematology-Oncology, Samsung Medical Center, Seoul 06351, Republic of Korea; (M.-J.A.); (S.-H.L.)
| | - Thitiporn Suwatanapongched
- Division of Diagnostic Radiology, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Kanchaporn Kongchauy
- Clinical Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Qiuxiang Ou
- Geneseeq Research Institute, Geneseeq Technology Inc., Nanjing 210032, China
| | - Ruoying Yu
- Geneseeq Research Institute, Geneseeq Technology Inc., Nanjing 210032, China
| | - Bee Choo Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119074, Singapore
| | - Tony S. K. Mok
- Department of Clinical Oncology, The Chinese University of Hong Kong, Central Ave, Hong Kong
| | - Ross A. Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119074, Singapore
| |
Collapse
|
6
|
Zhang S, Yang L, Yang Y, Yang G, Xu H, Niu X, Wang Y. The efficacy and safety of chemo-free therapy in epidermal growth factor receptor tyrosine kinase inhibitor-resistant advanced non-small cell lung cancer: A single-arm, phase II study. Cancer Med 2023; 12:19438-19448. [PMID: 37723846 PMCID: PMC10587943 DOI: 10.1002/cam4.6545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
OBJECTIVES The purpose of this study was to explore the efficacy and safety of toripalimab combined with anlotinib in patients with advanced non-small cell lung cancer (NSCLC) who acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). MATERIALS AND METHODS Patients who developed resistance after using first- or second-generation EGFR-TKIs as their first-line regimen without EGFR T790M mutation or had disease progression after being treated with third-generation EGFR-TKIs as first- or second-line therapy were enrolled. All patients received toripalimab (240 mg/day on Day 1, intravenously) combined with anlotinib (12 mg/day, Days 1-14, orally) once every 3 weeks. Treatment continued until disease progression, or if toxicity was intolerable. The primary endpoint was the objective response rate (ORR) assessed by the investigator. The secondary endpoint was the progression-free survival (PFS). RESULTS In total, 19 patients were enrolled between May 2020 and October 2021.The ORR was 0%, and a median PFS was 2.1 months (95% CI 0.251-3.949). Grade ≥3 treatment-related adverse events (AEs) occurred in 11% patients. Common adverse events included hypothyroidism (12/19), fatigue (9/19), and hypertension (8/19). Patients in stable disease (SD) group had lower abundance of EGFR mutation allele frequency (AF) before enrollment than those in progressive disease (PD) group (p = 0.031). Patients without detectable EGFR mutation (EGFR-) had longer PFS compared to the ones with EGFR mutations (p = 0.059). Patients with high levels of soluble programmed cell death ligand 1 (PD-L1) at baseline also tended to have longer PFS (p = 0.160). CONCLUSION Toripalimab combined with anlotinib was tolerable in EGFR-TKI-resistant advanced NSCLC patients not previously treated with chemotherapy. Patients without detectable EGFR mutation and high soluble PD-L1 levels may benefit from this chemotherapy-free treatment.
Collapse
Affiliation(s)
- Shuyang Zhang
- Cancer Center, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Lu Yang
- Department of Medical Oncology and Radiation SicknessPeking University Third HospitalBeijingChina
| | - Yaning Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Guangjian Yang
- Department of Respiratory Medicine, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Haiyan Xu
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xueliang Niu
- Department of Medical AffairsShanghai Junshi Biosciences Co., Ltd.ShanghaiChina
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
7
|
Successful administration of low-dose almonertinib in a patient with lung adenocarcinoma after osimertinib-induced interstitial lung disease: a case report and literature review. Anticancer Drugs 2023; 34:460-466. [PMID: 36373747 PMCID: PMC9891277 DOI: 10.1097/cad.0000000000001436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Osimertinib, the third generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is the standard treatment for nonsmall cell lung cancer with EGFR mutation. However, osimertinib-induced interstitial lung disease (OsiILD) is considered to be a serious adverse event, so some patients will have to discontinue the use of osimertinib due to OsiILD. Almonertinib is a novel third-generation EGFR-TKI. We herein report a patient who developed OsiILD after the use of osimertinib and then switched to almonertinib for further treatment with success. This is the first report of a successfull rechallenge with low-dose almonertinib after OsiILD. We also reviewed the literature to explore the possible risk factors and the subsequent treatment of OsiILD, suggesting that low-dose almonertinib may be an option for follow-up treatment of OsiILD.
Collapse
|
8
|
Li YZ, Kong SN, Liu YP, Yang Y, Zhang HM. Can Liquid Biopsy Based on ctDNA/cfDNA Replace Tissue Biopsy for the Precision Treatment of EGFR-Mutated NSCLC? J Clin Med 2023; 12:jcm12041438. [PMID: 36835972 PMCID: PMC9966257 DOI: 10.3390/jcm12041438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
More and more clinical trials have explored the role of liquid biopsy in the diagnosis and treatment of EGFR-mutated NSCLC. In certain circumstances, liquid biopsy has unique advantages and offers a new way to detect therapeutic targets, analyze drug resistance mechanisms in advanced patients, and monitor MRD in patients with operable NSCLC. Although its potential cannot be ignored, more evidence is needed to support the transition from the research stage to clinical application. We reviewed the latest progress in research on the efficacy and resistance mechanisms of targeted therapy for advanced NSCLC patients with plasma ctDNA EGFR mutation and the evaluation of MRD based on ctDNA detection in perioperative and follow-up monitoring.
Collapse
|
9
|
Fang X, Yu S, Jiang Y, Xiang Y, Lu K. Circulating tumor DNA detection in MRD assessment and diagnosis and treatment of non-small cell lung cancer. Front Oncol 2022; 12:1027664. [PMID: 36387176 PMCID: PMC9646858 DOI: 10.3389/fonc.2022.1027664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Circulating tumor DNA (ctDNA) has contributed immensely to the management of hematologic malignancy and is now considered a valuable detection tool for solid tumors. ctDNA can reflect the real-time tumor burden and be utilized for analyzing specific cancer mutations via liquid biopsy which is a non-invasive procedure that can be used with a relatively high frequency. Thus, many clinicians use ctDNA to assess minimal residual disease (MRD) and it serves as a prognostic and predictive biomarker for cancer therapy, especially for non-small cell lung cancer (NSCLC). Advanced methods have been developed to detect ctDNA, and recent clinical trials have shown the rationality and feasibility of ctDNA for identifying mutations and guiding treatments in NSCLC. Here, we have reviewed recently developed ctDNA detection methods and the importance of sequence analyses of ctDNA in NSCLC.
Collapse
Affiliation(s)
| | | | | | | | - Kaihua Lu
- Department of Oncology, The First Affiliated Hosptial of Nanjing Medicial University, Nanjing, China
| |
Collapse
|
10
|
Kunimasa K, Nishino K, Sato Y, Mori M, Ihara S, Suzuki H, Nagatomo I, Kumagai T, Morishima T, Imamura F. Fragment size and dynamics of EGFR-mutated tumor-derived DNA provide prognostic information regarding EGFR-TKI efficacy in patients with EGFR-mutated NSCLC. Sci Rep 2022; 12:13544. [PMID: 35941190 PMCID: PMC9360008 DOI: 10.1038/s41598-022-17848-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Circulating tumor DNA (ctDNA)-based next-generation sequencing (NGS) is a complementary and alternative test to tissue-based NGS. We performed NGS analysis of ctDNA samples collected from patients with EGFR-mutated non-small cell lung cancer (NSCLC) who received osimertinib; the samples were collected after second-line treatment, before osimertinib treatment, one week and one month after osimertinib treatment, and at the time of resistance formation. We examinedthe correlation with osimertinib efficacy. From January to December 2018, 34 patients with EGFR-mutated NSCLC harboring EGFR T790M mutations were enrolled, and a total of 132 peripheral blood samples were collected. The fragment sizes of EGFR-mutated ctDNAs were significantly shorter than that of their corresponding normal fragments. Osimertinib treatment of patients with shorter EGFR-mutated ctDNA fragments resulted in shorter progression-free survival (PFS). The disappearance time of EGFR-mutated fragment fractions and clonal evolution patterns (new driver mutation group, additional mutation group vs. attenuation group) were each associated with the PFS achieved with osimertinib treatment; however,multivariate analysis revealed that only shorter EGFR-mutated ctDNA fragments were associated with the PFS resulting from osimertinib treatment. EGFR-mutated ctDNA fragment size, time of disappearance of these fragments, and clonal evolution pattern were related to the effects of osimertinib. In particular, short EGFR-mutated ctDNA fragmentation may be closely related to osimertinib efficacy prediction.
Collapse
Affiliation(s)
- Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae Chuoku, Osaka City, Osaka, 541-8567, Japan.
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae Chuoku, Osaka City, Osaka, 541-8567, Japan
| | | | - Masahide Mori
- Department of Thoracic Oncology, Osaka Toneyama Medical Center, Osaka, Japan
| | - Shoichi Ihara
- Department of Respiratory Medicine, Osaka Police Hospital, Osaka, Japan
| | - Hidekazu Suzuki
- Department of Thoracic Oncology, Osaka Habikino Medical Center, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toru Kumagai
- Department of Thoracic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae Chuoku, Osaka City, Osaka, 541-8567, Japan
| | | | - Fumio Imamura
- Department of Thoracic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae Chuoku, Osaka City, Osaka, 541-8567, Japan
| |
Collapse
|
11
|
Pesta M, Shetti D, Kulda V, Knizkova T, Houfkova K, Bagheri MS, Svaton M, Polivka J. Applications of Liquid Biopsies in Non-Small-Cell Lung Cancer. Diagnostics (Basel) 2022; 12:1799. [PMID: 35892510 PMCID: PMC9330570 DOI: 10.3390/diagnostics12081799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
The concept of liquid biopsy as an analysis tool for non-solid tissue carried out for the purpose of providing information about solid tumors was introduced approximately 20 years ago. Additional to the detection of circulating tumor cells (CTCs), the liquid biopsy approach quickly included the analysis of circulating tumor DNA (ctDNA) and other tumor-derived markers such as circulating cell-free RNA or extracellular vesicles. Liquid biopsy is a non-invasive technique for detecting multiple cancer-associated biomarkers that is easy to obtain and can reflect the characteristics of the entire tumor mass. Currently, ctDNA is the key component of the liquid biopsy approach from the point of view of the prognosis assessment, prediction, and monitoring of the treatment of non-small-cell lung cancer (NSCLC) patients. ctDNA in NSCLC patients carries variants or rearrangements that drive carcinogenesis, such as those in EGFR, KRAS, ALK, or ROS1. Due to advances in pharmacology, these variants are the subject of targeted therapy. Therefore, the detection of these variants has gained attention in clinical medicine. Recently, methods based on qPCR (ddPCR, BEAMing) and next-generation sequencing (NGS) are the most effective approaches for ctDNA analysis. This review addresses various aspects of the use of liquid biopsy with an emphasis on ctDNA as a biomarker in NSCLC patients.
Collapse
Affiliation(s)
- Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Plzen, Czech Republic; (D.S.); (T.K.); (K.H.)
| | - Dattatrya Shetti
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Plzen, Czech Republic; (D.S.); (T.K.); (K.H.)
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic;
| | - Tereza Knizkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Plzen, Czech Republic; (D.S.); (T.K.); (K.H.)
| | - Katerina Houfkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00 Plzen, Czech Republic; (D.S.); (T.K.); (K.H.)
| | - Mahyar Sharif Bagheri
- Department of Histology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic; (M.S.B.); (J.P.)
| | - Martin Svaton
- Department of Pneumology and Phthisiology, Faculty of Medicine in Pilsen, Charles University, University Hospital in Pilsen, E. Benese 13, 301 00 Plzen, Czech Republic;
| | - Jiri Polivka
- Department of Histology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic; (M.S.B.); (J.P.)
| |
Collapse
|
12
|
Phan TT, Tran VT, Tran BT, Ho TT, Pho SP, Le AT, Le VT, Nguyen HT, Nguyen ST. EGFR-plasma mutations in prognosis for non-small cell lung cancer treated with EGFR TKIs: A meta-analysis. Cancer Rep (Hoboken) 2021; 5:e1544. [PMID: 34427045 PMCID: PMC9351650 DOI: 10.1002/cnr2.1544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The plasma-based epidermal growth factor receptor (EGFR) mutation testing is approved recently to use in clinical practice. However, it has not been used as a prognostic marker yet because of contradictory results. AIM This meta-analysis aims to clarify the role of the EGFR-plasma test in prognosis for non-small cell lung cancer (NSCLC) who have mutant tumors and receive EGFR tyrosine kinase inhibitors (TKIs). METHODS AND RESULTS The PubMed/MEDLINE, Web of Science, Cochrane Library, and Google Scholar databases were searched for relevant studies by April 10, 2021. The hazard ratio (HR) from reports was extracted and used to assess the correlation of EGFR-plasma status with progression-free survival (PFS) and overall survival (OS). A total of 35 eligible studies with 4106 patients were enrolled in the final analysis. Patients with concurrent EGFR mutations in pretreatment plasma have shorter PFS (HR = 2.00, 95% confidence interval [CI]: 1.73-2.31, p < .001) and OS time (HR = 2.31, 95% CI: 1.89-2.83, p < .001) compared to the tumor-only mutation cases. Besides, the persistence of EGFR-activating mutations in post-treatment plasma is associated with worse PFS (HR = 3.84, 95% CI: 2.96-4.99, p < .001) and OS outcome (HR = 3.22, 95% CI: 2.35-4.42, p < .001) compared to others. Notably, the prognostic value of the EGFR-plasma test is also validated in treatment with third-generation EGFR TKI and significance regardless of different detection methods. CONCLUSION The presence of EGFR-plasma mutations at pretreatment and after EGFR TKI initiation is the worse prognostic factor for PFS and OS in NSCLC.
Collapse
Affiliation(s)
- Thang Thanh Phan
- The Laboratory D Unit, Clinical Cancer Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam.,Faculty of Biology-Biotechnology, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
| | - Vinh Thanh Tran
- The Laboratory D Unit, Clinical Cancer Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Bich-Thu Tran
- Faculty of Biology-Biotechnology, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
| | - Toan Trong Ho
- The Laboratory D Unit, Clinical Cancer Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Suong Phuoc Pho
- The Laboratory D Unit, Clinical Cancer Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Anh Tuan Le
- Department of Chemo-Radiotherapy, Clinical Cancer Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Vu Thuong Le
- Department of Thoracic Disease, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Hang Thuy Nguyen
- Department of Clinical Pathology, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Son Truong Nguyen
- The Laboratory D Unit, Clinical Cancer Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam.,Department of the Vice Minister, Ministry of Health, Hanoi City, Vietnam
| |
Collapse
|
13
|
Chang S, Shim HS, Kim TJ, Choi YL, Kim WS, Shin DH, Kim L, Park HS, Lee GK, Lee CH. Molecular biomarker testing for non-small cell lung cancer: consensus statement of the Korean Cardiopulmonary Pathology Study Group. J Pathol Transl Med 2021; 55:181-191. [PMID: 33966368 PMCID: PMC8141968 DOI: 10.4132/jptm.2021.03.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
Molecular biomarker testing is the standard of care for non–small cell lung cancer (NSCLC) patients. In 2017, the Korean Cardiopulmonary Pathology Study Group and the Korean Molecular Pathology Study Group co-published a molecular testing guideline which contained almost all known genetic changes that aid in treatment decisions or predict prognosis in patients with NSCLC. Since then there have been significant changes in targeted therapies as well as molecular testing including newly approved targeted drugs and liquid biopsy. In order to reflect these changes, the Korean Cardiopulmonary Pathology Study Group developed a consensus statement on molecular biomarker testing. This consensus statement was crafted to provide guidance on what genes should be tested, as well as methodology, samples, patient selection, reporting and quality control.
Collapse
Affiliation(s)
- Sunhee Chang
- Department of Pathology, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon-La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Wan Seop Kim
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
| | - Dong Hoon Shin
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Lucia Kim
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
| | - Heae Surng Park
- Department of Pathology, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Geon Kook Lee
- Department of Pathology, National Cancer Center, Goyang, Korea
| | - Chang Hun Lee
- Department of Pathology, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | | |
Collapse
|