1
|
Yao Z, Zhang H, Huang K, Huang G, Xi P, Jiang L, Qin D, Chen F, Li S, Wei R. Niraparib perturbs autophagosome-lysosome fusion in pancreatic ductal adenocarcinoma and exhibits anticancer potential against gemcitabine-resistant PDAC. Transl Oncol 2025; 51:102206. [PMID: 39603206 PMCID: PMC11635771 DOI: 10.1016/j.tranon.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
While poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPi) have achieved specific clinical benefits in a subset of pancreatic ductal adenocarcinoma (PDAC) patients, the potential role of the PARPi niraparib in PDAC necessitates further exploration. In this study, we demonstrated that Niraparib exhibited a pronounced inhibitory effect on autophagy in PDAC both in vitro and in vivo. Mechanistically, this inhibition was primarily attributed to niraparib's ability to disrupt the fusion process between autophagosomes and lysosomes, while potentially exerting a relatively minor impact on the initial stage of autophagy. The blockade effect observed may be mediated via modulation of the ERK signaling pathway, and this effect can be mitigated by the application of an ERK inhibitor (FR180204). Notably, the combined treatment regimen of niraparib and gemcitabine failed to elicit the anticipated synergistic effects in wild-type PANC-1 cells, instead exhibiting pronounced antagonistic interactions. However, in gemcitabine-resistant PANC-1 cells, the combination of niraparib and gemcitabine exhibited modest additive effects. Furthermore, niraparib demonstrated a heightened cytotoxic potency against gemcitabine-resistant PANC-1 cells compared to wild-type PANC-1 cells, both in vitro and in vivo. Our research established that niraparib inhibits late-stage autophagy in PDAC, potentially representing a valuable salvage therapy for gemcitabine-resistant PDAC. Further clinical studies are justified.
Collapse
Affiliation(s)
- Zehui Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Huihui Zhang
- Center for Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510060, China
| | - Kewei Huang
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Guizhong Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Pu Xi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lingmin Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dailei Qin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Ran Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Shah A, Jahan R, Kisling SG, Atri P, Natarajan G, Nallasamy P, Cox JL, Macha MA, Sheikh IA, Ponnusamy MP, Kumar S, Batra SK. Secretory Trefoil Factor 1 (TFF1) promotes gemcitabine resistance through chemokine receptor CXCR4 in Pancreatic Ductal Adenocarcinoma. Cancer Lett 2024; 598:217097. [PMID: 38964729 PMCID: PMC11804849 DOI: 10.1016/j.canlet.2024.217097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Gemcitabine is the first-line treatment option for patients with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). However, the frequent adoption of resistance to gemcitabine by cancer cells poses a significant challenge in treating this aggressive disease. In this study, we focused on analyzing the role of trefoil factor 1 (TFF1) in gemcitabine resistance in PDAC. Analysis of PDAC TCGA and cell line datasets indicated an enrichment of TFF1 in the gemcitabine-resistant classical subtype and suggested an inverse correlation between TFF1 expression and sensitivity to gemcitabine treatment. The genetic ablation of TFF1 in PDAC cells enhanced their sensitivity to gemcitabine treatment in both in vitro and in vivo tumor xenografts. The biochemical studies revealed that TFF1 contributes to gemcitabine resistance through enhanced stemness, increasing migration ability of cancer cells, and induction of anti-apoptotic genes. We further pursued studies to predict possible receptors exerting TFF1-mediated gemcitabine resistance. Protein-protein docking investigations with BioLuminate software revealed that TFF1 binds to the chemokine receptor CXCR4, which was supported by real-time binding analysis of TFF1 and CXCR4 using SPR studies. The exogenous addition of TFF1 increased the proliferation and migration of PDAC cells through the pAkt/pERK axis, which was abrogated by treatment with a CXCR4-specific antagonist AMD3100. Overall, the present study demonstrates the contribution of the TFF1-CXCR4 axis in imparting gemcitabine resistance properties to PDAC cells.
Collapse
MESH Headings
- Humans
- Gemcitabine
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Drug Resistance, Neoplasm
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Trefoil Factor-1/genetics
- Trefoil Factor-1/metabolism
- Animals
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Antimetabolites, Antineoplastic/pharmacology
- Cell Movement/drug effects
- Mice
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Apoptosis/drug effects
- Mice, Nude
- Cell Proliferation/drug effects
- Molecular Docking Simulation
Collapse
Affiliation(s)
- Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Rahat Jahan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| | - Ishfaq Ahmad Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5950, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, 68198-5950, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5950, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, 68198-5950, USA.
| |
Collapse
|
3
|
Li Y, Xu C, Han H, Pascual-Sabater S, Fillat C, Goel A. Aronia Berry Extract Modulates MYD88/NF-kB/P-Glycoprotein Axis to Overcome Gemcitabine Resistance in Pancreatic Cancer. Pharmaceuticals (Basel) 2024; 17:911. [PMID: 39065761 PMCID: PMC11279572 DOI: 10.3390/ph17070911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor survival rates, primarily due to the limited effectiveness of gemcitabine (Gem)-based chemotherapy, as well as the acquisition of chemotherapeutic resistance. Aronia berry extracts (ABEs), abundant in phenolic constituents, have been recently recognized for their anticancer properties as well as their encouraging potential to help overcome chemoresistance in various cancers. In the present study, we explored ABE's potential to overcome Gem resistance in PDAC and identify specific growth regulatory pathways responsible for its anticancer activity. Through a series of in vitro experiments in gemcitabine-resistant (Gem-R) cells, we elucidated the synergistic interactions between Gem and ABE treatments. Using advanced transcriptomic analysis and network pharmacology, we revealed key molecular pathways linked to chemoresistance and potential therapeutic targets of ABE in Gem-R PDAC cells. Subsequently, the findings from cell culture studies were validated in patient-derived 3D tumor organoids (PDOs). The combination treatment of ABE and Gem demonstrated significant synergism and anticancer effects on cell viability, proliferation, migration, and invasion in Gem-R cells. Transcriptomic analysis revealed a correlation between the NF-Κb signaling pathway and Gem-R (p < 0.05), exhibiting a marked upregulation of MYD88. Additionally, MYD88 exhibited a significant correlation with the overall survival rates in patients with PDAC patients in the TCGA cohort (HR = 1.58, p < 0.05). The MYD88/NF-Κb pathway contributes to chemoresistance by potentially upregulating efflux transporters like P-glycoprotein (P-gp). Our findings revealed that the combined treatment with ABE suppressed the NF-Κb pathway by targeting MYD88 and reducing P-gp expression to overcome Gem resistance. Lastly, the combination therapy proved highly effective in PDOs in reducing both their number and size (p < 0.05). Our study offers previously unrecognized insights into the ability of ABE to overcome Gem resistance in PDAC cells through its targeting of the MYD88/NF-κb/P-gp axis, hence providing a safe and cost-effective adjunctive therapeutic strategy to improve treatment outcomes in PDAC.
Collapse
Affiliation(s)
- Yuan Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA; (Y.L.); (C.X.)
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA; (Y.L.); (C.X.)
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116004, China
| | - Haiyong Han
- Division of Molecular Medicine, The Translational Genomics Research Institute, Phoenix, AZ 85004, USA;
| | - Silvia Pascual-Sabater
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-S.); (C.F.)
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-S.); (C.F.)
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA; (Y.L.); (C.X.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Chen Y, Cheng CS, Yang P, Dong S, Chen L. Novel silicene-mesoporous silica nanoparticles conjugated gemcitabine induced cellular apoptosis via upregulating NF- κB p65 nuclear translocation suppresses pancreatic cancer growth in vitroand in vivo. NANOTECHNOLOGY 2024; 35:255101. [PMID: 38452386 DOI: 10.1088/1361-6528/ad312a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Pancreatic cancer's high fatality rates stem from its resistance to systemic drug delivery and aggressive metastasis, limiting the efficacy of conventional treatments. In this study, two-dimensional ultrathin silicene nanosheets were initially synthesized and near-infrared-responsive two-dimensional silicene-mesoporous silica nanoparticles (SMSNs) were successfully constructed to load the clinically-approved conventional pancreatic cancer chemotherapeutic drug gemcitabine. Experiments on nanoparticle characterization show that they have excellent photothermal conversion ability and stability. Then silicene-mesoporous silica nanoparticles loaded with gemcitabine nanoparticles (SMSN@G NPs) were employed in localized photothermal therapy to control pancreatic tumor growth and achieve therapeutic effects. Our research confirmed the functionality of SMSN@G NPs through immunoblotting and apoptotic assays, demonstrating its capacity to enhance the nuclear translocation of the NF-κB p65, further affect the protein levels of apoptosis-related genes, induce the apoptosis of tumor cells, and ultimately inhibit the growth of the tumor. Additionally, the study assessed the inhibitory role of SMSN@G NPs on pancreatic neoplasm growthin vivo, revealing its excellent biocompatibility. SMSN@G NPs have a nice application prospect for anti-pancreatic tumors.
Collapse
Affiliation(s)
- Yuhang Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Peiwen Yang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shu Dong
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lianyu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
5
|
Dai YW, Pan YT, Lin DF, Chen XH, Zhou X, Wang WM. Bulk anda single-cell transcriptome profiling reveals the molecular characteristics of T cell-mediated tumor killing in pancreatic cancer. Heliyon 2024; 10:e27216. [PMID: 38449660 PMCID: PMC10915414 DOI: 10.1016/j.heliyon.2024.e27216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Background Despite the potential of immune checkpoint blockade (ICB) as a promising treatment for Pancreatic adenocarcinoma (PAAD), there is still a need to identify specific subgroups of PAAD patients who may benefit more from ICB. T cell-mediated tumor killing (TTK) is the primary concept behind ICB. We explored subtypes according to genes correlated with the sensitivity to TKK and unraveled their underlying associations for PAAD immunotherapies. Methods Genes that control the responsiveness of T cell-induced tumor destruction (GSTTK) were examined in PAAD, focusing on their varying expression levels and association with survival results. Moreover, samples with PAAD were separated into two subsets using unsupervised clustering based on GSTTK. Variability was evident in the tumor immune microenvironment, genetic mutation, and response to immunotherapy among different groups. In the end, we developed TRGscore, an innovative scoring system, and investigated its clinical and predictive significance in determining sensitivity to immunotherapy. Results Patients with PAAD were categorized into 2 clusters based on the expression of 52 GSTTKs, which showed varying levels and prognostic relevance, revealing unique TTK patterns. Survival outcome, immune cell infiltration, immunotherapy responses, and functional enrichment are also distinguished among the two clusters. Moreover, we found the CATSPER1 gene promotes the progression of PAAD through experiments. In addition, the TRGscore effectively predicted the responses to chemotherapeutics or immunotherapy in patients with PAAD and overall survival. Conclusions TTK exerted a vital influence on the tumor immune environment in PAAD. A greater understanding of TIME characteristics was gained through the evaluation of the variations in TTK modes across different tumor types. It highlights variations in the performance of T cells in PAAD and provides direction for improved treatment approaches.
Collapse
Affiliation(s)
- Yin-wei Dai
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya-ting Pan
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan-feng Lin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-hu Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-ming Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Li Y, Su H, Liu K, Zhao Z, Wang Y, Chen B, Xia J, Yuan H, Huang DS, Gu Y. Individualized detection of TMPRSS2-ERG fusion status in prostate cancer: a rank-based qualitative transcriptome signature. World J Surg Oncol 2024; 22:49. [PMID: 38331878 PMCID: PMC10854045 DOI: 10.1186/s12957-024-03314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/13/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND TMPRSS2-ERG (T2E) fusion is highly related to aggressive clinical features in prostate cancer (PC), which guides individual therapy. However, current fusion prediction tools lacked enough accuracy and biomarkers were unable to be applied to individuals across different platforms due to their quantitative nature. This study aims to identify a transcriptome signature to detect the T2E fusion status of PC at the individual level. METHODS Based on 272 high-throughput mRNA expression profiles from the Sboner dataset, we developed a rank-based algorithm to identify a qualitative signature to detect T2E fusion in PC. The signature was validated in 1223 samples from three external datasets (Setlur, Clarissa, and TCGA). RESULTS A signature, composed of five mRNAs coupled to ERG (five ERG-mRNA pairs, 5-ERG-mRPs), was developed to distinguish T2E fusion status in PC. 5-ERG-mRPs reached 84.56% accuracy in Sboner dataset, which was verified in Setlur dataset (n = 455, accuracy = 82.20%) and Clarissa dataset (n = 118, accuracy = 81.36%). Besides, for 495 samples from TCGA, two subtypes classified by 5-ERG-mRPs showed a higher level of significance in various T2E fusion features than subtypes obtained through current fusion prediction tools, such as STAR-Fusion. CONCLUSIONS Overall, 5-ERG-mRPs can robustly detect T2E fusion in PC at the individual level, which can be used on any gene measurement platform without specific normalization procedures. Hence, 5-ERG-mRPs may serve as an auxiliary tool for PC patient management.
Collapse
Affiliation(s)
- Yawei Li
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hang Su
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Kaidong Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhangxiang Zhao
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuquan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Xia
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huating Yuan
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - De-Shuang Huang
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big Health, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Yunyan Gu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
7
|
Ogunleye A, Piyawajanusorn C, Ghislat G, Ballester PJ. Large-Scale Machine Learning Analysis Reveals DNA Methylation and Gene Expression Response Signatures for Gemcitabine-Treated Pancreatic Cancer. HEALTH DATA SCIENCE 2024; 4:0108. [PMID: 38486621 PMCID: PMC10904073 DOI: 10.34133/hds.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 12/08/2023] [Indexed: 03/17/2024]
Abstract
Background: Gemcitabine is a first-line chemotherapy for pancreatic adenocarcinoma (PAAD), but many PAAD patients do not respond to gemcitabine-containing treatments. Being able to predict such nonresponders would hence permit the undelayed administration of more promising treatments while sparing gemcitabine life-threatening side effects for those patients. Unfortunately, the few predictors of PAAD patient response to this drug are weak, none of them exploiting yet the power of machine learning (ML). Methods: Here, we applied ML to predict the response of PAAD patients to gemcitabine from the molecular profiles of their tumors. More concretely, we collected diverse molecular profiles of PAAD patient tumors along with the corresponding clinical data (gemcitabine responses and clinical features) from the Genomic Data Commons resource. From systematically combining 8 tumor profiles with 16 classification algorithms, each of the resulting 128 ML models was evaluated by multiple 10-fold cross-validations. Results: Only 7 of these 128 models were predictive, which underlines the importance of carrying out such a large-scale analysis to avoid missing the most predictive models. These were here random forest using 4 selected mRNAs [0.44 Matthews correlation coefficient (MCC), 0.785 receiver operating characteristic-area under the curve (ROC-AUC)] and XGBoost combining 12 DNA methylation probes (0.32 MCC, 0.697 ROC-AUC). By contrast, the hENT1 marker obtained much worse random-level performance (practically 0 MCC, 0.5 ROC-AUC). Despite not being trained to predict prognosis (overall and progression-free survival), these ML models were also able to anticipate this patient outcome. Conclusions: We release these promising ML models so that they can be evaluated prospectively on other gemcitabine-treated PAAD patients.
Collapse
Affiliation(s)
- Adeolu Ogunleye
- Department of Organismal Biology,
Uppsala University, Uppsala, Sweden
| | | | - Ghita Ghislat
- Department of Life Sciences,
Imperial College London, London, UK
| | | |
Collapse
|
8
|
Ingle K, LaComb JF, Graves LM, Baines AT, Bialkowska AB. AUM302, a novel triple kinase PIM/PI3K/mTOR inhibitor, is a potent in vitro pancreatic cancer growth inhibitor. PLoS One 2023; 18:e0294065. [PMID: 37943821 PMCID: PMC10635512 DOI: 10.1371/journal.pone.0294065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Pancreatic cancer is one of the leading causes of cancer deaths, with pancreatic ductal adenocarcinoma (PDAC) being the most common subtype. Advanced stage diagnosis of PDAC is common, causing limited treatment opportunities. Gemcitabine is a frequently used chemotherapeutic agent which can be used as a monotherapy or in combination. However, tumors often develop resistance to gemcitabine. Previous studies show that the proto-oncogene PIM kinases (PIM1 and PIM3) are upregulated in PDAC compared to matched normal tissue and are related to chemoresistance and PDAC cell growth. The PIM kinases are also involved in the PI3K/AKT/mTOR pathway to promote cell survival. In this study, we evaluate the effect of the novel multikinase PIM/PI3K/mTOR inhibitor, AUM302, and commercially available PIM inhibitor, TP-3654. Using five human PDAC cell lines, we found AUM302 to be a potent inhibitor of cell proliferation, cell viability, cell cycle progression, and phosphoprotein expression, while TP-3654 was less effective. Significantly, AUM302 had a strong impact on the viability of gemcitabine-resistant PDAC cells. Taken together, these results demonstrate that AUM302 exhibits antitumor activity in human PDAC cells and thus has the potential to be an effective drug for PDAC therapy.
Collapse
Affiliation(s)
- Komala Ingle
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States of America
| | - Joseph F. LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States of America
| | - Lee M. Graves
- Department of Pharmacology, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Antonio T. Baines
- Department of Pharmacology, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biological & Biomedical Sciences, College of Health & Sciences, North Carolina Central University, Durham, North Carolina, United States of America
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
9
|
Natu J, Nagaraju GP. Gemcitabine effects on tumor microenvironment of pancreatic ductal adenocarcinoma: Special focus on resistance mechanisms and metronomic therapies. Cancer Lett 2023; 573:216382. [PMID: 37666293 DOI: 10.1016/j.canlet.2023.216382] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest malignancies, with dismal survival rates and extremely prevalent chemoresistance. Gemcitabine is one of the primary treatments used in treating PDACs, but its benefits are limited due to chemoresistance, which could be attributed to interactions between the tumor microenvironment (TME) and intracellular processes. In preclinical models, certain schedules of administration of gemcitabine modulate the TME in a manner that does not promote resistance. Metronomic therapy constitutes a promising strategy to overcome some barriers associated with current PDAC treatments. This review will focus on gemcitabine's mechanism in treating PDAC, combination therapies, gemcitabine's interactions with the TME, and gemcitabine in metronomic therapies.
Collapse
Affiliation(s)
- Jay Natu
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA.
| |
Collapse
|
10
|
Ding B, Song Y, Liu S, Peng C, Zhang Y. Mechanisms underlying the changes in acetaldehyde dehydrogenase 1 in cholangiocarcinoma. J Cancer 2023; 14:3203-3213. [PMID: 37928420 PMCID: PMC10622993 DOI: 10.7150/jca.86967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/08/2023] [Indexed: 11/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the most recurrent malignant tumor found in the biliary system. It originates from the bile duct epithelial cells characterized by easy metastasis, high intermittent rate, and poor prognosis. Acetaldehyde dehydrogenase 1 (ALDH1), a marker of cancer stem cells, the levels of which are particularly elevated in various of malignant tumors. Additionally, the increased ALDH1 levels are closely related to the degree and prognosis of malignant tumors. This study reviewed the mechanisms underlying the changes in ALDH1 levels in CCA.
Collapse
Affiliation(s)
- Bai Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China
| | - Yinghui Song
- Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410015, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China
- Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410015, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China
| | - Yujing Zhang
- Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410015, China
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
11
|
Gu L, Hickey RJ, Malkas LH. Therapeutic Targeting of DNA Replication Stress in Cancer. Genes (Basel) 2023; 14:1346. [PMID: 37510250 PMCID: PMC10378776 DOI: 10.3390/genes14071346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/30/2023] Open
Abstract
This article reviews the currently used therapeutic strategies to target DNA replication stress for cancer treatment in the clinic, highlighting their effectiveness and limitations due to toxicity and drug resistance. Cancer cells experience enhanced spontaneous DNA damage due to compromised DNA replication machinery, elevated levels of reactive oxygen species, loss of tumor suppressor genes, and/or constitutive activation of oncogenes. Consequently, these cells are addicted to DNA damage response signaling pathways and repair machinery to maintain genome stability and support survival and proliferation. Chemotherapeutic drugs exploit this genetic instability by inducing additional DNA damage to overwhelm the repair system in cancer cells. However, the clinical use of DNA-damaging agents is limited by their toxicity and drug resistance often arises. To address these issues, the article discusses a potential strategy to target the cancer-associated isoform of proliferating cell nuclear antigen (caPCNA), which plays a central role in the DNA replication and damage response network. Small molecule and peptide agents that specifically target caPCNA can selectively target cancer cells without significant toxicity to normal cells or experimental animals.
Collapse
Affiliation(s)
- Long Gu
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Robert J Hickey
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Linda H Malkas
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
12
|
Beckinger S, Daunke T, Aldag L, Krüger S, Heckl S, Wesch D, Schäfer H, Röcken C, Rahn S, Sebens S. Hepatic myofibroblasts exert immunosuppressive effects independent of the immune checkpoint regulator PD-L1 in liver metastasis of pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:1160824. [PMID: 37207152 PMCID: PMC10189124 DOI: 10.3389/fonc.2023.1160824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) represents the 4th most common cause of cancer-related deaths in Western countries. Most patients are diagnosed at advanced stages, often already with metastases. The main site of metastasis is the liver and hepatic myofibroblasts (HMF) play a pivotal role in metastatic outgrowth. Immune checkpoint inhibitors (ICI) targeting programmed death ligand 1 (PD-L1) or programmed cell death protein 1 (PD-1) improved treatment of several cancers but not of PDAC. Therefore, this study aimed to better understand the impact of HMF on PD-L1 expression and immune evasion of PDAC cells during liver metastasis. Methods Formalin-fixed and paraffin embedded biopsy samples or diagnostic resection specimens from liver metastases of 15 PDAC patients were used for immunohistochemical analyses. Serial sections were stained with antibodies directed against Pan-Cytokeratin, αSMA, CD8, and PD-L1. To investigate whether the PD-1/PD-L1 axis and HMF contribute to immune escape of PDAC liver metastases, a stroma enriched 3D spheroid coculture model was established in vitro, using two different PDAC cell lines, HMF, and CD8+ T cells. Here, functional and flow cytometry analyses were conducted. Results Immunohistochemical analysis of liver tissue sections of PDAC patients revealed that HMF represent an abundant stroma population in liver metastases, with clear differences in the spatial distribution in small (1500 µm) and large (> 1500 μm) metastases. In the latter, PD-L1 expression was mainly located at the invasion front or evenly distributed, while small metastases either lacked PD-L1 expression or showed mostly weak expression in the center. Double stainings revealed that PD-L1 is predominantly expressed by stromal cells, especially HMF. Small liver metastases with no or low PD-L1 expression comprised more CD8+ T cells in the tumor center, while large metastases exhibiting stronger PD-L1 expression comprised less CD8+ T cells being mostly located at the invasion front. HMF-enriched spheroid cocultures with different ratios of PDAC cells and HMF well mimicking conditions of hepatic metastases in situ. Here, HMF impaired the release of effector molecules by CD8+ T cells and the induction of PDAC cell death, an effect that was dependent on the amount of HMF but also of PDAC cells. ICI treatment led to elevated secretion of distinct CD8+ T cell effector molecules but did not increase PDAC cell death under either spheroid condition. Conclusion Our findings indicate a spatial reorganization of HMF, CD8+ T cells, and PD-L1 expression during progression of PDAC liver metastases. Furthermore, HMF potently impair the effector phenotype of CD8+ T cells but the PD-L1/PD-1 axis apparently plays a minor role in this scenario suggesting that immune evasion of PDAC liver metastases relies on other immunosuppressive mechanisms.
Collapse
Affiliation(s)
- Silje Beckinger
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Tina Daunke
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Leon Aldag
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Sandra Krüger
- Department of Pathology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Steffen Heckl
- Department of Pathology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- Department of Internal Medicine II, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Heiner Schäfer
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Christoph Röcken
- Department of Internal Medicine II, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Sascha Rahn
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
- *Correspondence: Susanne Sebens,
| |
Collapse
|