1
|
Fenton LK, Marshall JR, Schuerger AC, Smith JK, Kelley KL. Aeolian Biodispersal of Terrestrial Microorganisms on Mars Through Saltation Bombardment of Spacecraft. ASTROBIOLOGY 2024; 24:1128-1142. [PMID: 39453416 DOI: 10.1089/ast.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
A major unknown in the field of planetary protection is the degree to which natural atmospheric processes remove terrestrial microorganisms from robotic and crewed spacecraft that could potentially contaminate Mars (i.e., forward contamination). We present experiments in which we measured the removal rate of Bacillus subtilis HA101 spores from aluminum surfaces under the bombardment of naturally rounded sand grains. To simulate grain impacts, we constructed a pneumatic sand-feed system and gun to accelerate grains to a desired speed, with independent control of impacting grain mass, flux, and angle. Spore counts of the resulting bombarded surfaces when using scanning electron microscopy indicate that although spores directly impacted by sand grains would likely be killed, those immediately adjacent to grain impacts might be released into the environment intact. The experiments demonstrate a linear relationship between the fractional dislodgement rate of spores and grain impact speed, which can be used to estimate input to microbial transport models (e.g., using numerical models of saltation). Even the slowest grain impacts (âŒ2.7 m/s) dislodged spores. Such slow events may be common and widespread on Mars, which suggests that microbial dislodgement by slow saltation near the surface is largely unavoidable.
Collapse
Affiliation(s)
| | | | - Andrew C Schuerger
- Dept. of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - J Ken Smith
- Arizona State University, Moffett Field, California, USA
| | - Karen L Kelley
- Electron Microscopy Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Heydari E, Schroeder JF, Calef FJ, Parker TJ, Fairén AG. Lacustrine sedimentation by powerful storm waves in Gale crater and its implications for a warming episode on Mars. Sci Rep 2023; 13:18715. [PMID: 37907611 PMCID: PMC10618461 DOI: 10.1038/s41598-023-45068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
This investigation documents that the Rugged Terrain Unit, the Stimson formation, and the Greenheugh sandstone were deposited in a 1200Â m-deep lake that formed after the emergence of Mt. Sharp in Gale crater, Mars, nearly 4Â billion years ago. In fact, the Curiosity rover traversed on a surface that once was the bottom of this lake and systematically examined the strata that were deposited in its deepest waters on the crater floor to layers that formed along its shoreline on Mt. Sharp. This provided a rare opportunity to document the evolution of one aqueous episode from its inception to its desiccation and to determine the warming mechanism that caused it. Deep water lacustrine siltstones directly overlie conglomerates that were deposited by mega floods on the crater floor. This indicates that the inception phase of the lake was sudden and took place when flood waters poured into the crater. The lake expanded quickly and its shoreline moved up the slope of Mt. Sharp during the lake-level rise phase and deposited a layer of sandstone with large cross beds under the influence of powerful storm waves. The lake-level highstand phase was dominated by strong bottom currents that transported sediments downhill and deposited one of the most distinctive sedimentological features in Gale crater: a layer of sandstone with a 3Â km-long field of meter-high subaqueous antidunes (the Washboard) on Mt. Sharp. Bottom current continued downhill and deposited sandstone and siltstone on the foothills of Mt. Sharp and on the crater floor, respectively. The lake-level fall phase caused major erosion of lacustrine strata that resulted in their patchy distribution on Mt. Sharp. Eroded sediments were then transported to deep waters by gravity flows and were re-deposited as conglomerate and sandstone in subaqueous channels and in debris flow fans. The desiccation phase took place in calm waters of the lake. The aqueous episode we investigated was vigorous but short-lived. Its characteristics as determined by our sedimentological study matches those predicted by an asteroid impact. This suggests that the heat generated by an impact transformed Mars into a warm, wet, and turbulent planet. It resulted in planet-wide torrential rain, giant floods on land, powerful storms in the atmosphere, and strong waves in lakes. The absence of age dates prevents the determination of how long the lake existed. Speculative rates of lake-level change suggest that the lake could have lasted for a period ranging from 16 to 240Â Ky.
Collapse
Affiliation(s)
- Ezat Heydari
- Department of Physics, Atmospheric Sciences, and Geoscience, Jackson State University, 1400 Lynch Street, Jackson, MS, 39217, USA.
| | - Jeffrey F Schroeder
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Fred J Calef
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Timothy J Parker
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Alberto G Fairén
- Centro de AstrobiologĂa (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Ramalho TP, Chopin G, Salman L, Baumgartner V, Heinicke C, Verseux C. On the growth dynamics of the cyanobacterium Anabaena sp. PCC 7938 in Martian regolith. NPJ Microgravity 2022; 8:43. [PMID: 36289210 PMCID: PMC9606272 DOI: 10.1038/s41526-022-00240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022] Open
Abstract
The sustainability of crewed infrastructures on Mars will depend on their abilities to produce consumables on site. These abilities may be supported by diazotrophic, rock-leaching cyanobacteria: from resources naturally available on Mars, they could feed downstream biological processes and lead to the production of oxygen, food, fuels, structural materials, pharmaceuticals and more. The relevance of such a system will be dictated largely by the efficiency of regolith utilization by cyanobacteria. We therefore describe the growth dynamics of Anabaena sp. PCC 7938 as a function of MGS-1 concentration (a simulant of a widespread type of Martian regolith), of perchlorate concentration, and of their combination. To help devise improvement strategies and predict dynamics in regolith of differing composition, we identify the limiting element in MGS-1 - phosphorus - and its concentration-dependent effect on growth. Finally, we show that, while maintaining cyanobacteria and regolith in a single compartment can make the design of cultivation processes challenging, preventing direct physical contact between cells and grains may reduce growth. Overall, we hope for the knowledge gained here to support both the design of cultivation hardware and the modeling of cyanobacterium growth within.
Collapse
Affiliation(s)
- Tiago P Ramalho
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Guillaume Chopin
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Lina Salman
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Vincent Baumgartner
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Christiane Heinicke
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Cyprien Verseux
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany.
| |
Collapse
|
4
|
Grady MM, Summons RE, Swindle TD, Westall F, Kminek G, Meyer MA, Beaty DW, Carrier BL, Haltigin T, Hays LE, Agee CB, Busemann H, Cavalazzi B, Cockell CS, Debaille V, Glavin DP, Hauber E, Hutzler A, Marty B, McCubbin FM, Pratt LM, Regberg AB, Smith AL, Smith CL, Tait KT, Tosca NJ, Udry A, Usui T, Velbel MA, Wadhwa M, Zorzano MP. The Scientific Importance of Returning Airfall Dust as a Part of Mars Sample Return (MSR). ASTROBIOLOGY 2022; 22:S176-S185. [PMID: 34904884 DOI: 10.1089/ast.2021.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dust transported in the martian atmosphere is of intrinsic scientific interest and has relevance for the planning of human missions in the future. The MSR Campaign, as currently designed, presents an important opportunity to return serendipitous, airfall dust. The tubes containing samples collected by the Perseverance rover would be placed in cache depots on the martian surface perhaps as early as 2023-24 for recovery by a subsequent mission no earlier than 2028-29, and possibly as late as 2030-31. Thus, the sample tube surfaces could passively collect dust for multiple years. This dust is deemed to be exceptionally valuable as it would inform our knowledge and understanding of Mars' global mineralogy, surface processes, surface-atmosphere interactions, and atmospheric circulation. Preliminary calculations suggest that the total mass of such dust on a full set of tubes could be as much as 100âmg and, therefore, sufficient for many types of laboratory analyses. Two planning steps would optimize our ability to take advantage of this opportunity: (1) the dust-covered sample tubes should be loaded into the Orbiting Sample container (OS) with minimal cleaning and (2) the capability to recover this dust early in the workflow within an MSR Sample Receiving Facility (SRF) would need to be established. A further opportunity to advance dust/atmospheric science using MSR, depending upon the design of the MSR Campaign elements, may lie with direct sampling and the return of airborne dust. Summary of Findings FINDING D-1: An accumulation of airfall dust would be an unavoidable consequence of leaving M2020 sample tubes cached and exposed on the surface of Mars. Detailed laboratory analyses of this material would yield new knowledge concerning surface-atmosphere interactions that operate on a global scale, as well as provide input to planning for the future robotic and human exploration of Mars. FINDING D-2: The detailed information that is possible from analysis of airfall dust can only be obtained by investigation in Earth laboratories, and thus this is an important corollary aspect of MSR. The same information cannot be obtained from orbit, from in situ analyses, or from analyses of samples drilled from single locations. FINDING D-3: Given that at least some martian dust would be on the exterior surfaces of any sample tubes returned to Earth, the capability to receive and curate dust in an MSR Sample Receiving Facility (SRF) is essential. SUMMARY STATEMENT: The fact that any sample tubes cached on the martian surface would accumulate some quantity of martian airfall dust presents a low-cost scientifically valuable opportunity. Some of this dust would inadvertently be knocked off as part of tube manipulation operations, but any dust possible should be loaded into the OS along with the sample tubes. This dust should be captured in an SRF and made available for detailed scientific analysis.
Collapse
Affiliation(s)
| | - Roger E Summons
- Massachusetts Institute of Technology, Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Timothy D Swindle
- University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona, USA
| | - Frances Westall
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans, France
| | | | - Michael A Meyer
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - David W Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Brandi L Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Lindsay E Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Carl B Agee
- University of New Mexico, Institute of Meteoritics, Albuquerque, New Mexico, USA
| | - Henner Busemann
- ETH ZĂŒrich, Institute of Geochemistry and Petrology, ZĂŒrich, Switzerland
| | - Barbara Cavalazzi
- UniversitĂ di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Bologna, Italy
| | - Charles S Cockell
- University of Edinburgh, Centre for Astrobiology, School of Physics and Astronomy, Edinburgh, UK
| | | | - Daniel P Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | - Ernst Hauber
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | | | | | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Bloomington, Indiana, USA
| | - Aaron B Regberg
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Alvin L Smith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Caroline L Smith
- Natural History Museum, Department of Earth Sciences, London, UK
- University of Glasgow, School of Geographical and Earth Sciences, Glasgow, UK
| | - Kimberly T Tait
- Royal Ontario Museum, Department of Natural History, Toronto, Ontario, Canada
| | - Nicholas J Tosca
- University of Cambridge, Department of Earth Sciences, Cambridge, UK
| | - Arya Udry
- University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Tomohiro Usui
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Michael A Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | - Meenakshi Wadhwa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Arizona State University, Tempe, Arizona, USA
| | - Maria-Paz Zorzano
- Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Spain
- University of Aberdeen, Department of Planetary Sciences, School of Geosciences, King's College, Aberdeen, UK
| |
Collapse
|
5
|
Rull F, Veneranda M, Manrique-Martinez JA, Sanz-Arranz A, Saiz J, Medina J, Moral A, Perez C, Seoane L, Lalla E, Charro E, Lopez JM, Nieto LM, Lopez-Reyes G. Spectroscopic study of terrestrial analogues to support rover missions to Mars - A Raman-centred review. Anal Chim Acta 2022; 1209:339003. [PMID: 35569840 DOI: 10.1016/j.aca.2021.339003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022]
Abstract
The 2020s could be called, with little doubt, the "Mars decade". No other period in space exploration history has experienced such interest in placing orbiters, rovers and landers on the Red Planet. In 2021 alone, the Emirates' first Mars Mission (the Hope orbiter), the Chinese Tianwen-1 mission (orbiter, lander and rover), and NASA's Mars 2020 Perseverance rover reached Mars. The ExoMars mission Rosalind Franklin rover is scheduled for launch in 2022. Beyond that, several other missions are proposed or under development. Among these, MMX to Phobos and the very important Mars Sample Return can be cited. One of the key mission objectives of the Mars 2020 and ExoMars 2022 missions is the detection of traces of potential past or present life. This detection relies to a great extent on the analytical results provided by complementary spectroscopic techniques. The development of these novel instruments has been carried out in step with the analytical study of terrestrial analogue sites and materials, which serve to test the scientific capabilities of spectroscopic prototypes while providing crucial information to better understand the geological processes that could have occurred on Mars. Being directly involved in the development of three of the first Raman spectrometers to be validated for space exploration missions (Mars 2020/SuperCam, ExoMars/RLS and RAX/MMX), the present review summarizes some of the most relevant spectroscopy-based analyses of terrestrial analogues carried out over the past two decades. Therefore, the present work describes the analytical results gathered from the study of some of the most distinctive terrestrial analogues of Martian geological contexts, as well as the lessons learned mainly from ExoMars mission simulations conducted at representative analogue sites. Learning from the experience gained in the described studies, a general overview of the scientific outcome expected from the spectroscopic system developed for current and forthcoming planetary missions is provided.
Collapse
Affiliation(s)
- Fernando Rull
- University of Valladolid, Plaza de Santa Cruz 8, 47002, Valladolid, Spain.
| | - Marco Veneranda
- University of Valladolid, Plaza de Santa Cruz 8, 47002, Valladolid, Spain
| | | | | | - Jesus Saiz
- University of Valladolid, Plaza de Santa Cruz 8, 47002, Valladolid, Spain
| | - JesĂșs Medina
- University of Valladolid, Plaza de Santa Cruz 8, 47002, Valladolid, Spain
| | - Andoni Moral
- National Institute for Aerospace Technology (INTA), TorrejĂłn de Ardoz, Spain
| | - Carlos Perez
- National Institute for Aerospace Technology (INTA), TorrejĂłn de Ardoz, Spain
| | - Laura Seoane
- National Institute for Aerospace Technology (INTA), TorrejĂłn de Ardoz, Spain
| | - Emmanuel Lalla
- York University, Centre for Research in Earth and Space Science, Toronto, Canada
| | - Elena Charro
- University of Valladolid, Plaza de Santa Cruz 8, 47002, Valladolid, Spain
| | - Jose Manuel Lopez
- University of Valladolid, Plaza de Santa Cruz 8, 47002, Valladolid, Spain
| | - Luis Miguel Nieto
- University of Valladolid, Plaza de Santa Cruz 8, 47002, Valladolid, Spain
| | | |
Collapse
|
6
|
Emran A, Marzen LJ, King Jr. DT, Chevrier VF. Thermophysical and Compositional Analyses of Dunes at Hargraves Crater, Mars. THE PLANETARY SCIENCE JOURNAL 2021; 2:218. [DOI: 10.3847/psj/ac25ee] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Scheller EL, Ehlmann BL, Hu R, Adams DJ, Yung YL. Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust. Science 2021; 372:56-62. [PMID: 33727251 DOI: 10.1126/science.abc7717] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/04/2021] [Indexed: 11/02/2022]
Abstract
Geological evidence shows that ancient Mars had large volumes of liquid water. Models of past hydrogen escape to space, calibrated with observations of the current escape rate, cannot explain the present-day deuterium-to-hydrogen isotope ratio (D/H). We simulated volcanic degassing, atmospheric escape, and crustal hydration on Mars, incorporating observational constraints from spacecraft, rovers, and meteorites. We found that ancient water volumes equivalent to a 100 to 1500 meter global layer are simultaneously compatible with the geological evidence, loss rate estimates, and D/H measurements. In our model, the volume of water participating in the hydrological cycle decreased by 40 to 95% over the Noachian period (~3.7 billion to 4.1 billion years ago), reaching present-day values by ~3.0 billion years ago. Between 30 and 99% of martian water was sequestered through crustal hydration, demonstrating that irreversible chemical weathering can increase the aridity of terrestrial planets.
Collapse
Affiliation(s)
- E L Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| | - B L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.,Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Renyu Hu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - D J Adams
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Y L Yung
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.,Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
8
|
Veneranda M, Lopez-Reyes G, Pascual Sanchez E, KrzesiĆska AM, Manrique-Martinez JA, Sanz-Arranz A, Lantz C, Lalla E, Moral A, Medina J, Poulet F, Dypvik H, Werner SC, Vago JL, Rull F. ExoMars Raman Laser Spectrometer: A Tool to Semiquantify the Serpentinization Degree of Olivine-Rich Rocks on Mars. ASTROBIOLOGY 2021; 21:307-322. [PMID: 33252242 DOI: 10.1089/ast.2020.2265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We evaluated the effectiveness of the ExoMars Raman laser spectrometer (RLS) to determine the degree of serpentinization of olivine-rich units on Mars. We selected terrestrial analogs of martian ultramafic rocks from the Leka Ophiolite Complex (LOC) and analyzed them with both laboratory and flight-like analytical instruments. We first studied the mineralogical composition of the samples (mostly olivine and serpentine) with state-of-the-art diffractometric (X-ray diffractometry [XRD]) and spectroscopic (Raman, near-infrared spectroscopy [NIR]) laboratory systems. We compared these results with those obtained using our RLS ExoMars Simulator. Our work shows that the RLS ExoMars Simulator successfully identified all major phases. Moreover, when emulating the automatic operating mode of the flight instrument, the RLS ExoMars Simulator also detected several minor compounds (pyroxene and brucite), some of which were not observed by NIR and XRD (e.g., calcite). Thereafter, we produced RLS-dedicated calibration curves (R2 between 0.9993 and 0.9995 with an uncertainty between ±3.0% and ±5.2% with a confidence interval of 95%) to estimate the relative content of olivine and serpentine in the samples. Our results show that RLS can be very effective in identifying serpentine, a scientific target of primary importance for the potential detection of biosignatures on Mars-the main objective of the ExoMars rover mission.
Collapse
Affiliation(s)
- Marco Veneranda
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Valladolid, Spain
| | - Guillermo Lopez-Reyes
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Valladolid, Spain
| | - Elena Pascual Sanchez
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Valladolid, Spain
| | - Agata M KrzesiĆska
- Department of Geosciences, Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
| | | | - Aurelio Sanz-Arranz
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Valladolid, Spain
| | - Cateline Lantz
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, Orsay, France
| | - Emmanuel Lalla
- Department of Earth and Space Science and Engineering, York University, Toronto, Canada
| | - Andoni Moral
- Department of Space Programs, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - JesĂșs Medina
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Valladolid, Spain
| | - Francois Poulet
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, Orsay, France
| | - Henning Dypvik
- Department of Geosciences, Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
| | - Stephanie C Werner
- Department of Geosciences, Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
| | | | - Fernando Rull
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Valladolid, Spain
| |
Collapse
|
9
|
Wiens RC, Edgett KS, Stack KM, Dietrich WE, Bryk AB, Mangold N, Bedford C, Gasda P, Fairen A, Thompson L, Johnson J, Gasnault O, Clegg S, Cousin A, Forni O, Frydenvang J, Lanza N, Maurice S, Newsom H, Ollila A, Payré V, Rivera-Hernandez F, Vasavada A. Origin and composition of three heterolithic boulder- and cobble-bearing deposits overlying the Murray and Stimson formations, Gale Crater, Mars. ICARUS 2020; 350:113897. [PMID: 32606479 PMCID: PMC7326610 DOI: 10.1016/j.icarus.2020.113897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heterolithic, boulder-containing, pebble-strewn surfaces occur along the lower slopes of Aeolis Mons ("Mt. Sharp") in Gale crater, Mars. They were observed in HiRISE images acquired from orbit prior to the landing of the Curiosity rover. The rover was used to investigate three of these units named Blackfoot, Brandberg, and Bimbe between sols 1099 and 1410. These unconsolidated units overlie the lower Murray formation that forms the base of Mt. Sharp, and consist of pebbles, cobbles and boulders. Blackfoot also overlies portions of the Stimson formation, which consists of eolian sandstone that is understood to significantly postdate the dominantly lacustrine deposition of the Murray formation. Blackfoot is elliptical in shape (62 Ă 26 m), while Brandberg is nearly circular (50 Ă 55 m), and Bimbe is irregular in shape, covering about ten times the area of the other two. The largest boulders are 1.5-2.5 m in size and are interpreted to be sandstones. As seen from orbit, some boulders are light-toned and others are dark-toned. Rover-based observations show that both have the same gray appearance from the ground and their apparently different albedos in orbital observations result from relatively flat sky-facing surfaces. Chemical observations show that two clasts of fine sandstone at Bimbe have similar compositions and morphologies to nine ChemCam targets observed early in the mission, near Yellowknife Bay, including the Bathurst Inlet outcrop, and to at least one target (Pyramid Hills, Sol 692) and possibly a cap rock unit just north of Hidden Valley, locations that are several kilometers apart in distance and tens of meters in elevation. These findings may suggest the earlier existence of draping strata, like the Stimson formation, that would have overlain the current surface from Bimbe to Yellowknife Bay. Compositionally these extinct strata could be related to the Siccar Point group to which the Stimson formation belongs. Dark, massive sandstone blocks at Bimbe are chemically distinct from blocks of similar morphology at Bradbury Rise, except for a single float block, Oscar (Sol 516). Conglomerates observed along a low, sinuous ridge at Bimbe consist of matrix and clasts with compositions similar to the Stimson formation, suggesting that stream beds likely existed nearly contemporaneously with the dunes that eventually formed the Stimson formation, or that they had the same source material. In either case, they represent a later pulse of fluvial activity relative to the lakes associated with the Murray formation. These three units may be local remnants of infilled impact craters (especially circular-shaped Brandberg), decayed buttes, patches of unconsolidated fluvial deposits, or residual mass-movement debris. Their incorporation of Stimson and Murray rocks, the lack of lithification, and appearance of being erosional remnants suggest that they record erosion and deposition events that post-date the exposure of the Stimson formation.
Collapse
Affiliation(s)
| | | | - Kathryn M. Stack
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - William E. Dietrich
- Department of Earth and Planetary Science, University of CaliforniaâBerkeley, Berkeley, CA, USA
| | - Alexander B. Bryk
- Department of Earth and Planetary Science, University of CaliforniaâBerkeley, Berkeley, CA, USA
| | - Nicolas Mangold
- Laboratoire de PlanĂ©tologie et GĂ©odynamique, UMR 6112 CNRS, UniversitĂ© Nantes, UniversitĂ© dâAngers, Nantes, France
| | | | | | - Alberto Fairen
- Centro de Astrobiologia (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, NY, USA
| | - Lucy Thompson
- Planetary and Space Science Centre, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Jeff Johnson
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Olivier Gasnault
- Université de Toulouse, UPS-OMP, Toulouse, France
- Institut de Recherche en Astrophysique et Planéetologie, CNRS, UMR 5277, Toulouse, France
| | - Sam Clegg
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Agnes Cousin
- Université de Toulouse, UPS-OMP, Toulouse, France
- Institut de Recherche en Astrophysique et Planéetologie, CNRS, UMR 5277, Toulouse, France
| | - Olivier Forni
- Université de Toulouse, UPS-OMP, Toulouse, France
- Institut de Recherche en Astrophysique et Planéetologie, CNRS, UMR 5277, Toulouse, France
| | | | - Nina Lanza
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Sylvestre Maurice
- Université de Toulouse, UPS-OMP, Toulouse, France
- Institut de Recherche en Astrophysique et Planéetologie, CNRS, UMR 5277, Toulouse, France
| | - Horton Newsom
- Institute of Meteoritics, University of New Mexico, Albuquerque, NM, USA
| | - Ann Ollila
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Valerie Payré
- Earth, Environmental, and Planetary Sciences, Rice University, Houston, TX, USA
| | | | - Ashwin Vasavada
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
10
|
Veneranda M, Manrique-Martinez JA, Lopez-Reyes G, Medina J, Torre-Fdez I, Castro K, Madariaga JM, Lantz C, Poulet F, KrzesiĆska AM, Hellevang H, Werner SC, Rull F. Spectroscopic study of olivine-bearing rocks and its relevance to the ExoMars rover mission. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117360. [PMID: 31319272 DOI: 10.1016/j.saa.2019.117360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
We present the compositional analysis of three terrestrial analogues of Martian olivine-bearing rocks derived from both laboratory and flight-derived analytical instruments. In the first step, state-of-the-art spectroscopic (XRF, NIR and Raman) and diffractometric (XRD) laboratory systems were complementary used. Besides providing a detailed mineralogical and geochemical characterization of the samples, results comparison shed light on the advantages ensured by the combined use of Raman and NIR techniques, being these the spectroscopic instruments that will soon deploy (2021) on Mars as part of the ExoMars/ESA rover payload. In order to extrapolate valuable indicators of the mineralogical data that could derive from the ExoMars/Raman Laser Spectrometer (RLS), laboratory results were then compared with the molecular data gathered through the RLS ExoMars Simulator. Beside correctly identifying all major phases (feldspar, pyroxene and olivine), the RLS ExoMars Simulator confirmed the presence of additional minor compounds (i.e. hematite and apatite) that were not detected by complementary techniques. Furthermore, concerning the in-depth study of olivine grains, the RLS ExoMars simulator was able to effectively detect the shifting of the characteristic double peak around 820 and 850âŻcm-1, from which the FeMg content of the analyzed crystals can be extrapolated. Considering that olivine is one of the main mineral phases of the ExoMars landing site (Oxia Planum), this study suggests that the ExoMars/RLS system has the potential to provide detailed information about the elemental composition of olivine on Mars.
Collapse
Affiliation(s)
- Marco Veneranda
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Ave. Francisco Vallés, 8, Boecillo 47151, Spain.
| | - Jose Antonio Manrique-Martinez
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Ave. Francisco Vallés, 8, Boecillo 47151, Spain
| | - Guillermo Lopez-Reyes
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Ave. Francisco Vallés, 8, Boecillo 47151, Spain
| | - JesĂșs Medina
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Ave. Francisco Vallés, 8, Boecillo 47151, Spain
| | - Imanol Torre-Fdez
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Kepa Castro
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Cateline Lantz
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, France
| | - Francois Poulet
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, France
| | - Agata M KrzesiĆska
- Department of Geosciences, Centre for Earth Evolution and Dynamics, University of Oslo, Norway
| | - Helge Hellevang
- Department of Geosciences, Centre for Earth Evolution and Dynamics, University of Oslo, Norway
| | - Stephanie C Werner
- Department of Geosciences, Centre for Earth Evolution and Dynamics, University of Oslo, Norway
| | - Fernando Rull
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Ave. Francisco Vallés, 8, Boecillo 47151, Spain
| |
Collapse
|
11
|
Ewing RC, Lapotre MGA, Lewis KW, Day M, Stein N, Rubin DM, Sullivan R, Banham S, Lamb MP, Bridges NT, Gupta S, Fischer WW. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2544-2573. [PMID: 29497590 PMCID: PMC5815379 DOI: 10.1002/2017je005324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 05/31/2023]
Abstract
The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large-ripple lee slopes. Lee slopes were ~29° where grainflows were present and ~33° where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50 Όm and 350 Όm with an intermediate axis mean size of 113 Όm (median: 103 Όm). Dissimilar to dune eolian processes on Earth, large, meter-scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12 cm and 28 cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune-field pattern dynamics and basin-scale boundary conditions will dictate the style and distribution of sedimentary processes.
Collapse
Affiliation(s)
- R. C. Ewing
- Department of Geology and GeophysicsTexas A&M UniversityCollege StationTexasUSA
| | - M. G. A. Lapotre
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - K. W. Lewis
- Department of Earth and Planetary SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - M. Day
- Jackson School of Geosciences, Department of Geological SciencesUniversity of Texas at AustinAustinTexasUSA
| | - N. Stein
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - D. M. Rubin
- Department of Earth and Planetary SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - R. Sullivan
- Department of AstronomyCornell UniversityIthacaNew YorkUSA
| | - S. Banham
- Department of Earth Science and EngineeringImperial College LondonLondonUK
| | - M. P. Lamb
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - N. T. Bridges
- The Johns Hopkins University Applied Physics LaboratoryLaurelMarylandUSA
| | - S. Gupta
- Department of Earth Science and EngineeringImperial College LondonLondonUK
| | - W. W. Fischer
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| |
Collapse
|
12
|
Ehlmann BL, Edgett KS, Sutter B, Achilles CN, Litvak ML, Lapotre MGA, Sullivan R, Fraeman AA, Arvidson RE, Blake DF, Bridges NT, Conrad PG, Cousin A, Downs RT, Gabriel TSJ, Gellert R, Hamilton VE, Hardgrove C, Johnson JR, Kuhn S, Mahaffy PR, Maurice S, McHenry M, Meslin PY, Ming DW, Minitti ME, Morookian JM, Morris RV, O'Connell-Cooper CD, Pinet PC, Rowland SK, Schröder S, Siebach KL, Stein NT, Thompson LM, Vaniman DT, Vasavada AR, Wellington DF, Wiens RC, Yen AS. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2510-2543. [PMID: 29497589 DOI: 10.1002/2016je005225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 05/25/2023]
Abstract
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 Όm) with â„6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 Όm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.
Collapse
|
13
|
Chojnacki M, Fenton LK. The Geologic Exploration of the Bagnold Dune Field at Gale Crater by the Curiosity Rover. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2216-2222. [PMID: 29564198 PMCID: PMC5857957 DOI: 10.1002/2017je005455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Mars Science Laboratory rover Curiosity engaged in a monthlong campaign investigating the Bagnold dune field in Gale crater. What represents the first in situ investigation of a dune field on another planet has resulted in a number of discoveries. Collectively, the Curiosity rover team has compiled the most comprehensive survey of any extraterrestrial aeolian system visited to date with results that yield important insights into a number of processes, including sediment transport, bed form morphology and structure, chemical and physical composition of aeolian sand, and wind regime characteristics. These findings and more are provided in detail by the JGR-Planets Special Issue Curiosity's Bagnold Dunes Campaign, Phase I.
Collapse
Affiliation(s)
- Matthew Chojnacki
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - Lori K Fenton
- Carl Sagan Center, SETI Institute, Mountain View, CA, USA
| |
Collapse
|