1
|
Cathro P, McCarthy P, Hoffmann P, Kidd S, Zilm P. Enterococcus faecalis V583 cell membrane protein expression to alkaline stress. FEMS Microbiol Lett 2022; 369:6679558. [PMID: 36044998 PMCID: PMC9491840 DOI: 10.1093/femsle/fnac082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
Enterococcus faecalis is able to adapt to alkaline conditions and is commonly recovered from teeth in which endodontic treatment has failed. The role that E. faecalis membrane proteins play in survival strategies to extreme alkaline conditions is unclear. We grew E. faecalis V583 in a chemostat at pH 8 and 11 at one-tenth the organism’s relative maximum growth rate. Following membrane shaving, isotope-coding protein labels were added at the peptide level to samples and then combined. The relative proportion of membrane proteins were identified using LC-ESI mass spectrometry and MaxQuant analysis. Ratios of membrane proteins were log2 transformed, with proteins deviating by more than 1 SD of the mean considered to be up- or down-regulated. A total of six proteins were up-regulated in pH 11 including: EF0669 (polysaccharide biosynthesis family); EF1927 (glycerol uptake facilitator), and EF0114 (glycosyl hydrolase). A total of five proteins were down-regulated including: EF0108 (C4-dicarboxylate transporter); EF1838 (PTS system IIC component); EF0456 (PTS system IID component); and EF0022 (PTS mannose-specific IID component). In extreme alkaline conditions, the membrane proteins of E. faecalis seem to be involved in a shift of carbohydrate metabolism from the PTS system to glycerol, which supports the formation of a protective capsule protecting the cell.
Collapse
Affiliation(s)
- Peter Cathro
- Oral Microbiology Laboratory, School of Dentistry, The University of Adelaide, Adelaide, South Australia
| | - Peter McCarthy
- School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Peter Hoffmann
- Adelaide Proteomics Centre, The University of Adelaide, Adelaide, South Australia, Australia5005
| | - Stephen Kidd
- School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Peter Zilm
- Oral Microbiology Laboratory, School of Dentistry, The University of Adelaide, Adelaide, South Australia
| |
Collapse
|
2
|
Integrated mass spectrometry-based multi-omics for elucidating mechanisms of bacterial virulence. Biochem Soc Trans 2021; 49:1905-1926. [PMID: 34374408 DOI: 10.1042/bst20191088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
Despite being considered the simplest form of life, bacteria remain enigmatic, particularly in light of pathogenesis and evolving antimicrobial resistance. After three decades of genomics, we remain some way from understanding these organisms, and a substantial proportion of genes remain functionally unknown. Methodological advances, principally mass spectrometry (MS), are paving the way for parallel analysis of the proteome, metabolome and lipidome. Each provides a global, complementary assay, in addition to genomics, and the ability to better comprehend how pathogens respond to changes in their internal (e.g. mutation) and external environments consistent with infection-like conditions. Such responses include accessing necessary nutrients for survival in a hostile environment where co-colonizing bacteria and normal flora are acclimated to the prevailing conditions. Multi-omics can be harnessed across temporal and spatial (sub-cellular) dimensions to understand adaptation at the molecular level. Gene deletion libraries, in conjunction with large-scale approaches and evolving bioinformatics integration, will greatly facilitate next-generation vaccines and antimicrobial interventions by highlighting novel targets and pathogen-specific pathways. MS is also central in phenotypic characterization of surface biomolecules such as lipid A, as well as aiding in the determination of protein interactions and complexes. There is increasing evidence that bacteria are capable of widespread post-translational modification, including phosphorylation, glycosylation and acetylation; with each contributing to virulence. This review focuses on the bacterial genotype to phenotype transition and surveys the recent literature showing how the genome can be validated at the proteome, metabolome and lipidome levels to provide an integrated view of organism response to host conditions.
Collapse
|
3
|
Zhang L, Song D, Wu Z. Transcriptome analysis of Cyclocarya paliurus flavonoids regulation of differently expressed genes in Enterococcus faecalis under low pH stress. Arch Microbiol 2021; 203:2147-2155. [PMID: 33611635 DOI: 10.1007/s00203-021-02215-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 01/23/2023]
Abstract
Enterococcus faecalis (E. faecalis) is an indigenous intestinal bacterium and has potential to be applied as probiotic supplement. Low pH is one of the main stresses that E. faecalis has to deal with to colonize in the gastrointestinal tract. Previous study indicated low concentration of flavonoids may enhance the tolerance of probiotic to environmental stress. In the present research, transcriptome analysis was employed to investigate the influence of Cyclocarya paliurus flavonoids (CPF) on E. faecalis exposed to low pH environment. The results revealed that under the stress of low pH, genes related to cell wall and membrane, transmembrane transport, metabolism process, energy production, and conversion stress proteins were significantly differentially expressed. And certain undesired changes of which (such as genes for MFS transporter were downregulated) could be partially mitigated by CPF intervention, indicating their capacity to improve the low pH tolerance of E. faecalis. Results from this study deepened our understanding of the beneficial role of CPF on the probiotic in the gastrointestinal environment.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing, 100083, People's Republic of China
| | - Dan Song
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
4
|
Li Y, Qin H, Ye M. An overview on enrichment methods for cell surface proteome profiling. J Sep Sci 2019; 43:292-312. [PMID: 31521063 DOI: 10.1002/jssc.201900700] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Cell surface proteins are essential for many important biological processes, including cell-cell interactions, signal transduction, and molecular transportation. With the characteristics of low abundance, high hydrophobicity, and high heterogeneity, it is difficult to get a comprehensive view of cell surface proteome by direct analysis. Thus, it is important to selectively enrich the cell surface proteins before liquid chromatography with mass spectrometry analysis. In recent years, a variety of enrichment methods have been developed. Based on the separation mechanism, these methods could be mainly classified into three types. The first type is based on their difference in the physicochemical property, such as size, density, charge, and hydrophobicity. The second one is based on the bimolecular affinity interaction with lectin or antibody. And the third type is based on the chemical covalent coupling to free side groups of surface-exposed proteins or carbohydrate chains, such as primary amines, carboxyl groups, glycan side chains. In addition, metabolic labeling and enzymatic reaction-based methods have also been employed to selectively isolate cell surface proteins. In this review, we will provide a comprehensive overview of the enrichment methods for cell surface proteome profiling.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| |
Collapse
|
5
|
Mishra S, Crowley PJ, Wright KR, Palmer SR, Walker AR, Datta S, Brady J. Membrane proteomic analysis reveals overlapping and independent functions of Streptococcus mutans Ffh, YidC1, and YidC2. Mol Oral Microbiol 2019; 34:131-152. [PMID: 31034136 PMCID: PMC6625898 DOI: 10.1111/omi.12261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
A comparative proteomic analysis was utilized to evaluate similarities and differences in membrane samples derived from the cariogenic bacterium Streptococcus mutans, including the wild-type strain and four mutants devoid of protein translocation machinery components, specifically ∆ffh, ∆yidC1, ∆yidC2, or ∆ffh/yidC1. The purpose of this work was to determine the extent to which the encoded proteins operate individually or in concert with one another and to identify the potential substrates of the respective pathways. Ffh is the principal protein component of the signal recognition particle (SRP), while yidC1 and yidC2 are dual paralogs encoding members of the YidC/Oxa/Alb family of membrane-localized chaperone insertases. Our results suggest that the co-translational SRP pathway works in concert with either YidC1 or YidC2 specifically, or with no preference for paralog, in the insertion of most membrane-localized substrates. A few instances were identified in which the SRP pathway alone, or one of the YidCs alone, appeared to be most relevant. These data shed light on underlying reasons for differing phenotypic consequences of ffh, yidC1 or yidC2 deletion. Our data further suggest that many membrane proteins present in a ∆yidC2 background may be non-functional, that ∆yidC1 is better able to adapt physiologically to the loss of this paralog, that shared phenotypic properties of ∆ffh and ∆yidC2 mutants can stem from impacts on different proteins, and that independent binding to ribosomal proteins is not a primary functional activity of YidC2. Lastly, genomic mutations accumulate in a ∆yidC2 background coincident with phenotypic reversion, including an apparent W138R suppressor mutation within yidC1.
Collapse
Affiliation(s)
- Surabhi Mishra
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| | - Paula J. Crowley
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| | - Katherine R. Wright
- Division of Biosciences College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Sara R. Palmer
- Division of Biosciences College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Alejandro R. Walker
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| | - Susmita Datta
- Department of Biostatistics, College of Public Health & Health Professions College of Medicine, University of Florida, 2004 Mowry Rd, P.O. Box 117450, Gainesville, FL 32611
| | - Jeannine Brady
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, Florida 32610
| |
Collapse
|
6
|
Parida R. Human MOSPD2: A bacterial Lmb mimicked auto-antigen is involved in immune infertility. J Transl Autoimmun 2019; 1:100002. [PMID: 32743492 PMCID: PMC7388392 DOI: 10.1016/j.jtauto.2019.100002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022] Open
Abstract
Autoantibody production is one of the leading factors of immune infertility, an autoimmune disease of the male reproductive system. The potential involvement of MHC-class II derived self-peptides against bacterial proteins in the antisperm antibody (ASA) production has been reported previously. Apparently, Streptococcus agalactiae has been considered as an important pathogen to impart infection-induced infertility in a bacteriospermia associated leukocytospermia (LCS/BS) state. Hence, the present study attempts to confirm S. agalactiae specific Laminin binding protein (Lmb) derived self-peptide ('KDSYTKKAKAFKKEA') namely human Motile Sperm domain-containing protein 2 (MOSPD2) as an auto-antigen in LCS/BS condition. Semen samples were collected from infertile men with LCS/BS (n = 17) and their fertile counterparts (n = 10). Gram-positive bacteria were predominantly identified in the entire 17 LCS samples using culture method followed by 16S rDNA sequencing technique. TLRs 2 and 4 expression used as markers of immune response in spermatozoa and sperm dysfunction were elevated in the LCS/BS spermatozoa as compared to their fertile counterparts. A significant increase in oxidative stress indices i.e., protein carbonylation, lipid peroxidation and acridine orange test (AOT), was also observed in the LCS/BS spermatozoa. Spermatozoa lysate (both auto and heterologous), bacterial lysate (control) and synthesized MOSPD2 self-peptide were used to test their antigenicity against the autoantibodies by rocket immunoelectrophoresis (RIEP) assay. Seminal plasma from LCS/BS patients with S. agalactiae was used as the source of autoantibodies. Spermatozoa and bacteria lysate; and MOSPD2 self-peptide were able to bind autoantibodies in the seminal plasma. Besides, the self-peptide showed a dose dependent increase in the precipitation of antibody. T-cell epitope mapping of 48 Enterococcus faecalis and 91Staphylococcus aureus surface proteins confirmed MOSPD2 as a global auto-antigen. Thus, augmentation of TLR expression in LCS/BS spermatozoa inferred MOSPD2 to be a putative immunogen. Altogether, these findings will delineate the significance of MOSPD2 auto-antigen in a bacteria derived immune infertility condition.
Collapse
Affiliation(s)
- Rajeshwari Parida
- Department of Zoology, Ravenshaw University, Cuttack, 753003, Odisha, India
| |
Collapse
|
7
|
Kumar L, Cox CR, Sarkar SK. Matrix metalloprotease-1 inhibits and disrupts Enterococcus faecalis biofilms. PLoS One 2019. [PMID: 30633757 DOI: 10.1371/journal.pone.021021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enterococcus faecalis is a major opportunistic pathogen that readily forms protective biofilms leading to chronic infections. Biofilms protect bacteria from detergent solutions, antimicrobial agents, environmental stress, and effectively make bacteria 10 to 1000-fold more resistant to antibiotic treatment. Extracellular proteins and polysaccharides are primary components of biofilms and play a key role in cell survival, microbial persistence, cellular interaction, and maturation of E. faecalis biofilms. Degradation of biofilm components by mammalian proteases is an effective antibiofilm strategy because proteases are known to degrade bacterial proteins leading to bacterial cell lysis and growth inhibition. Here, we show that human matrix metalloprotease-1 inhibits and disrupts E. faecalis biofilms. MMPs are cell-secreted zinc- and calcium-dependent proteases that degrade and regulate various structural components of the extracellular matrix. Human MMP1 is known to degrade type-1 collagen and can also cleave a wide range of substrates. We found that recombinant human MMP1 significantly inhibited and disrupted biofilms of vancomycin sensitive and vancomycin resistant E. faecalis strains. The mechanism of antibiofilm activity is speculated to be linked with bacterial growth inhibition and degradation of biofilm matrix proteins by MMP1. These findings suggest that human MMP1 can potentially be used as a potent antibiofilm agent against E. faecalis biofilms.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, CO, United States of America
| | - Christopher R Cox
- Department of Chemistry, Colorado School of Mines, CO, United States of America
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, CO, United States of America
| |
Collapse
|
8
|
Kumar L, Cox CR, Sarkar SK. Matrix metalloprotease-1 inhibits and disrupts Enterococcus faecalis biofilms. PLoS One 2019; 14:e0210218. [PMID: 30633757 PMCID: PMC6329490 DOI: 10.1371/journal.pone.0210218] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Enterococcus faecalis is a major opportunistic pathogen that readily forms protective biofilms leading to chronic infections. Biofilms protect bacteria from detergent solutions, antimicrobial agents, environmental stress, and effectively make bacteria 10 to 1000-fold more resistant to antibiotic treatment. Extracellular proteins and polysaccharides are primary components of biofilms and play a key role in cell survival, microbial persistence, cellular interaction, and maturation of E. faecalis biofilms. Degradation of biofilm components by mammalian proteases is an effective antibiofilm strategy because proteases are known to degrade bacterial proteins leading to bacterial cell lysis and growth inhibition. Here, we show that human matrix metalloprotease-1 inhibits and disrupts E. faecalis biofilms. MMPs are cell-secreted zinc- and calcium-dependent proteases that degrade and regulate various structural components of the extracellular matrix. Human MMP1 is known to degrade type-1 collagen and can also cleave a wide range of substrates. We found that recombinant human MMP1 significantly inhibited and disrupted biofilms of vancomycin sensitive and vancomycin resistant E. faecalis strains. The mechanism of antibiofilm activity is speculated to be linked with bacterial growth inhibition and degradation of biofilm matrix proteins by MMP1. These findings suggest that human MMP1 can potentially be used as a potent antibiofilm agent against E. faecalis biofilms.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, CO, United States of America
| | - Christopher R. Cox
- Department of Chemistry, Colorado School of Mines, CO, United States of America
| | - Susanta K. Sarkar
- Department of Physics, Colorado School of Mines, CO, United States of America
- * E-mail:
| |
Collapse
|
9
|
Ahmad Z, Morona R, Standish AJ. In vitro characterization and identification of potential substrates of a low molecular weight protein tyrosine phosphatase in Streptococcus pneumoniae. MICROBIOLOGY-SGM 2018; 164:697-703. [PMID: 29485030 DOI: 10.1099/mic.0.000631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus pneumoniae is a major human pathogen responsible for significant mortality and morbidity worldwide. Within the annotated genome of the pneumococcus lies a previously uncharacterized protein tyrosine phosphatase which shows homology to low molecular weight protein tyrosine phosphatases (LMWPTPs). LMWPTPs modulate many processes critical for the pathogenicity of a number of bacteria including capsular polysaccharide biosynthesis, stress response and persistence in host macrophages. Here, we demonstrate that Spd1837 is indeed a LMWPTP, by purifying the protein, and characterizing its phosphatase activity. Spd1837 showed specific tyrosine phosphatase activity, and it did not form higher order oligomers in contrast to many other LMWPTPs. Substrate-trapping assays using the wild-type and the phosphatase-deficient Spd1837 identified potential substrates/interacting proteins including major metabolic enzymes such as ATP-dependent-6-phosphofructokinase and Hpr kinase/phosphorylase. Given the tight association between the bacterial basic physiology and virulence, this study hopes to prompt further investigation of how the pneumococcus controls its metabolic flux via the LMWPTP Spd1837.
Collapse
Affiliation(s)
- Zuleeza Ahmad
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, 5005 South Australia, Australia
| | - Renato Morona
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, 5005 South Australia, Australia
| | - Alistair J Standish
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, 5005 South Australia, Australia
| |
Collapse
|
10
|
Zilm PS, Butnejski V, Rossi-Fedele G, Kidd SP, Edwards S, Vasilev K. D-amino acids reduce Enterococcus faecalis biofilms in vitro and in the presence of antimicrobials used for root canal treatment. PLoS One 2017; 12:e0170670. [PMID: 28151960 PMCID: PMC5289466 DOI: 10.1371/journal.pone.0170670] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/09/2017] [Indexed: 01/20/2023] Open
Abstract
Enterococcus faecalis is the most frequent species present in post-treatment disease and plays a significant role in persistent periapical infections following root canal treatment. Its ability to persist in stressful environments is inter alia, due to its ability to form biofilms. The presence of certain D-amino acids (DAAs) has previously been shown to reduce formation of Bacillus subtilis biofilms. The aims of this investigation were to determine if DAAs disrupt biofilms in early and late growth stages for clinical E. faecalis strains and to test their efficacy in disrupting E. faecalis biofilms grown in sub-minimum inhibitory concentrations of commonly used endodontic biocides. From thirty-seven E. faecalis strains, the ten "best" biofilm producers were used to test the ability of a mixture containing D-leucine, D-methionine, D-tyrosine and D-tryptophan to reduce biofilm growth over a period of 24, 72 and 144 hours and when compared to their cognate L-Amino Acids (LAAs). We have previously shown that sub-MIC levels of tetracycline and sodium hypochlorite promotes biofilm growth in clinical strains of E. faecalis. DAAs were therefore tested for their effectiveness to reduce biofilm growth in the presence of sub-minimal concentrations of sodium hypochlorite (NaOCl-0.031%) and Odontocide™ (0.25% w/v), and in the presence of Odontopaste™ (0.25% w/v). DAAs significantly reduced biofilm formation for all strains tested in vitro, while DAAs significantly reduced biofilm formation compared to LAAs. The inhibitory effect of DAAs on biofilm formation was concentration dependent. DAAs were also shown to be effective in reducing E. faecalis biofilms in the presence of Odontopaste™ and sub-MIC levels of NaOCl and Odontocide™. The results suggest that the inclusion of DAAs into current endodontic procedures may reduce E. faecalis biofilms.
Collapse
Affiliation(s)
- Peter S. Zilm
- Microbiology laboratory, The School of Dentistry, The University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| | - Victor Butnejski
- Microbiology laboratory, The School of Dentistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Giampiero Rossi-Fedele
- Microbiology laboratory, The School of Dentistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen P. Kidd
- Australian Centre for Antimicrobial Resistance Ecology, Research Centre for Infectious Disease, School of Biological Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Suzanne Edwards
- School of Public Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Krasimir Vasilev
- School of Engineering, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|