1
|
Mavila AM, Vargas JA, Condori E, Suclupe Farro EG, Furtado AA, López JM, Gonzalez SL, Pereira HD, Marapara JL, Paredes RR, Cobos M, Castro JC, Garratt RC, Leonardo DA. Phylogenetic analysis and structural studies of heteromeric acetyl-CoA carboxylase from the oleaginous Amazonian microalgae Ankistrodesmus sp.: Insights into the BC and BCCP subunits. J Struct Biol 2025; 217:108200. [PMID: 40174731 DOI: 10.1016/j.jsb.2025.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/03/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Acetyl-CoA carboxylase (ACC) is an essential enzyme in fatty acid biosynthesis that catalyzes the formation of malonyl-CoA from acetyl-CoA. While structural studies on ACC components have largely focused on prokaryotes and higher plants, the assembly and molecular adaptations of ACC in microalgae remain underexplored. This study aimed to fill this gap by providing the first structural and evolutionary characterization of both biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) from a microalga (Ankistrodesmus sp.). Phylogenetic analysis revealed distinct evolutionary trajectories for BC and BCCP, with BC forming a chlorophyte-specific clade closely related to other oleaginous species, while BCCP displayed two distinct isoforms within green algae, resulting from gene duplication. The crystallographic structure of BC was solved in its apo (1.75 Å) and ADP-Mg2+-bound (1.90 Å) states, revealing conserved conformational changes associated with cofactor binding. BCCP from Ankistrodesmus sp. displayed a unique QLGTF/H motif instead of the canonical AMKXM biotinylation motif, suggesting loss of biotinylation capacity. However, the presence of three additional lysines in the protruding thumb loop, with Lys95 as a candidate for biotin attachment, indicates potential compensatory adaptations. SEC-MALS and pull-down assays confirmed the formation of a stable 1:1 BC-BCCP complex, and circular dichroism showed increased thermal stability of the complex, supporting its structural stability. This study highlights unique structural adaptations in Ankistrodesmus sp. ACC, emphasizing the evolutionary plasticity of BC and BCCP. These insights provide a foundation for future investigations into ACC regulation in photosynthetic organisms and offer potential biotechnological applications for optimizing lipid production in microalgae.
Collapse
Affiliation(s)
- Andry Mercedes Mavila
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru
| | - Jhon Antoni Vargas
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Eloy Condori
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Erick Giancarlo Suclupe Farro
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Adriano Alves Furtado
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Josué Manuel López
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru; Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Silvia Lucila Gonzalez
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru
| | - Humberto D'Muniz Pereira
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Jorge Luis Marapara
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru; Departamento Académico de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Ciudad Universitaria de Zungarococha, Iquitos 1600, Perú
| | - Roger Ruiz Paredes
- Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonia Peruana (UNAP), Ciudad Universitaria de Zungarococha, Iquitos 1600, Peru
| | - Marianela Cobos
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru; Departamento Académico de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Ciudad Universitaria de Zungarococha, Iquitos 1600, Perú
| | - Juan C Castro
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru; Departamento Académico de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Ciudad Universitaria de Zungarococha, Iquitos 1600, Perú
| | - Richard Charles Garratt
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Diego Antonio Leonardo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil.
| |
Collapse
|
2
|
Shen J, Wu W, Wang K, Wu J, Liu B, Li C, Gong Z, Hong X, Fang H, Zhang X, Xu X. Chloroflexus aurantiacus acetyl-CoA carboxylase evolves fused biotin carboxylase and biotin carboxyl carrier protein to complete carboxylation activity. mBio 2024; 15:e0341423. [PMID: 38572988 PMCID: PMC11077971 DOI: 10.1128/mbio.03414-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Acetyl-CoA carboxylases (ACCs) convert acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis and autotrophic carbon fixation pathways. Three functionally distinct components, biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT), are either separated or partially fused in different combinations, forming heteromeric ACCs. However, an ACC with fused BC-BCCP and separate CT has not been identified, leaving its catalytic mechanism unclear. Here, we identify two BC isoforms (BC1 and BC2) from Chloroflexus aurantiacus, a filamentous anoxygenic phototroph that employs 3-hydroxypropionate (3-HP) bi-cycle rather than Calvin cycle for autotrophic carbon fixation. We reveal that BC1 possesses fused BC and BCCP domains, where BCCP could be biotinylated by E. coli or C. aurantiacus BirA on Lys553 residue. Crystal structures of BC1 and BC2 at 3.2 Å and 3.0 Å resolutions, respectively, further reveal a tetramer of two BC1-BC homodimers, and a BC2 homodimer, all exhibiting similar BC architectures. The two BC1-BC homodimers are connected by an eight-stranded β-barrel of the partially resolved BCCP domain. Disruption of β-barrel results in dissociation of the tetramer into dimers in solution and decreased biotin carboxylase activity. Biotinylation of the BCCP domain further promotes BC1 and CTβ-CTα interactions to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-HP via co-expression with a recombinant malonyl-CoA reductase in E. coli cells. This study revealed a heteromeric ACC that evolves fused BC-BCCP but separate CTα and CTβ to complete ACC activity.IMPORTANCEAcetyl-CoA carboxylase (ACC) catalyzes the rate-limiting step in fatty acid biosynthesis and autotrophic carbon fixation pathways across a wide range of organisms, making them attractive targets for drug discovery against various infections and diseases. Although structural studies on homomeric ACCs, which consist of a single protein with three subunits, have revealed the "swing domain model" where the biotin carboxyl carrier protein (BCCP) domain translocates between biotin carboxylase (BC) and carboxyltransferase (CT) active sites to facilitate the reaction, our understanding of the subunit composition and catalytic mechanism in heteromeric ACCs remains limited. Here, we identify a novel ACC from an ancient anoxygenic photosynthetic bacterium Chloroflexus aurantiacus, it evolves fused BC and BCCP domain, but separate CT components to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-hydroxypropionate (3-HP) via co-expression with recombinant malonyl-CoA reductase in E. coli cells. These findings expand the diversity and molecular evolution of heteromeric ACCs and provide a structural basis for potential applications in 3-HP biosynthesis.
Collapse
Affiliation(s)
- Jiejie Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China
| | - Wenping Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China
| | - Kangle Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China
| | - Jingyi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China
| | - Bing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China
| | - Chunyang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China
| | - Zijun Gong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China
| | - Xin Hong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China
| | - Han Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China
| | - Xingwei Zhang
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xiaoling Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Hollensteiner J, Schneider D, Poehlein A, Brinkhoff T, Daniel R. Pan-genome analysis of six Paracoccus type strain genomes reveal lifestyle traits. PLoS One 2023; 18:e0287947. [PMID: 38117845 PMCID: PMC10732464 DOI: 10.1371/journal.pone.0287947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/15/2023] [Indexed: 12/22/2023] Open
Abstract
The genus Paracoccus capable of inhabiting a variety of different ecological niches both, marine and terrestrial, is globally distributed. In addition, Paracoccus is taxonomically, metabolically and regarding lifestyle highly diverse. Until now, little is known on how Paracoccus can adapt to such a range of different ecological niches and lifestyles. In the present study, the genus Paracoccus was phylogenomically analyzed (n = 160) and revisited, allowing species level classification of 16 so far unclassified Paracoccus sp. strains and detection of five misclassifications. Moreover, we performed pan-genome analysis of Paracoccus-type strains, isolated from a variety of ecological niches, including different soils, tidal flat sediment, host association such as the bluespotted cornetfish, Bugula plumosa, and the reef-building coral Stylophora pistillata to elucidate either i) the importance of lifestyle and adaptation potential, and ii) the role of the genomic equipment and niche adaptation potential. Six complete genomes were de novo hybrid assembled using a combination of short and long-read technologies. These Paracoccus genomes increase the number of completely closed high-quality genomes of type strains from 15 to 21. Pan-genome analysis revealed an open pan-genome composed of 13,819 genes with a minimal chromosomal core (8.84%) highlighting the genomic adaptation potential and the huge impact of extra-chromosomal elements. All genomes are shaped by the acquisition of various mobile genetic elements including genomic islands, prophages, transposases, and insertion sequences emphasizing their genomic plasticity. In terms of lifestyle, each mobile genetic elements should be evaluated separately with respect to the ecological context. Free-living genomes, in contrast to host-associated, tend to comprise (1) larger genomes, or the highest number of extra-chromosomal elements, (2) higher number of genomic islands and insertion sequence elements, and (3) a lower number of intact prophage regions. Regarding lifestyle adaptations, free-living genomes share genes linked to genetic exchange via T4SS, especially relevant for Paracoccus, known for their numerous extrachromosomal elements, enabling adaptation to dynamic environments. Conversely, host-associated genomes feature diverse genes involved in molecule transport, cell wall modification, attachment, stress protection, DNA repair, carbon, and nitrogen metabolism. Due to the vast number of adaptive genes, Paracoccus can quickly adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Jacqueline Hollensteiner
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Ali I, Khan A, Fa Z, Khan T, Wei DQ, Zheng J. Crystal structure of Acetyl-CoA carboxylase (AccB) from Streptomyces antibioticus and insights into the substrate-binding through in silico mutagenesis and biophysical investigations. Comput Biol Med 2022; 145:105439. [PMID: 35344865 DOI: 10.1016/j.compbiomed.2022.105439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 11/18/2022]
Abstract
Acetyl-CoA carboxylase (ACC) is crucial for polyketides biosynthesis and acts as an essential metabolic checkpoint. It is also an attractive drug target against obesity, cancer, microbial infections, and diabetes. However, the lack of knowledge, particularly sequence-structure function relationship to narrate ligand-enzyme binding, has hindered the progress of ACC-specific therapeutics and unnatural "natural" polyketides. Structural characterization of such enzymes will boost the opportunity to understand the substrate binding, designing new inhibitors and information regarding the molecular rules which control the substrate specificity of ACCs. To understand the substrate specificity, we determined the crystal structure of AccB (Carboxyl-transferase, CT) from Streptomyces antibioticus with a resolution of 2.3 Å and molecular modeling approaches were employed to unveil the molecular mechanism of acetyl-CoA recognition and processing. The CT domain of S. antibioticus shares a similar structural organization with the previous structures and the two steps reaction was confirmed by enzymatic assay. Furthermore, to reveal the key hotspots required for the substrate recognition and processing, in silico mutagenesis validated only three key residues (V223, Q346, and Q514) that help in the fixation of the substrate. Moreover, we also presented atomic level knowledge on the mechanism of the substrate binding, which unveiled the terminal loop (500-514) function as an opening and closing switch and pushes the substrate inside the cavity for stable binding. A significant decline in the hydrogen bonding half-life was observed upon the alanine substitution. Consequently, the presented structural data highlighted the potential key interacting residues for substrate recognition and will also help to re-design ACCs active site for proficient substrate specificity to produce diverse polyketides.
Collapse
Affiliation(s)
- Imtiaz Ali
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zhang Fa
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|