1
|
Zhao Y, Chen J, Xu S, Chen Y. CircMETTL15 induces TMTC3 production by absorbing miR-944 to promote hepatocellular carcinoma cell malignancy. J Biochem Mol Toxicol 2024; 38:e23567. [PMID: 37867458 DOI: 10.1002/jbt.23567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/26/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Previous data have suggested the involvement of circular RNA (circRNA) in hepatocellular carcinoma (HCC) progression. Up to now, the effect of circMETTL15 on HCC development remains unknown. This study aims to analyze the function of circMETTL15 in HCC development and the underlying mechanism. RNA expression of circMETTL15, miR-944, and transmembrane O-mannosyltransferase targeting cadherins 3 (TMTC3) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was evaluated by Western blot analysis assay or immunohistochemistry assay. Cell proliferation was investigated by cell counting kit-8 assay, 5-Ethynyl-29-deoxyuridine (EdU) assay, and cell colony formation assay. Cell migration and invasion were assessed by wound-healing assay and transwell assay, respectively. Angiogenic capacity was analyzed by tube formation assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to identify the interplay between miR-944 and circMETTL15 or TMTC3. Xenograft mouse model assay was conducted to reveal the effect of circMETTL15 on tumor formation in vivo. CircMETTL15 and TMTC3 expression were significantly upregulated, while miR-944 expression was downregulated in HCC tissues and cells. CircMETTL15 knockdown led to decreased cell proliferation, migration, invasion, and tube formation. Besides, the inhibitors of miR-944, a target miRNA of circMETTL15, partially restored circMETTL15 silencing-mediated effects on the proliferation, migration, invasion, and tube formation of HCC cells. MiR-944 overexpression also inhibited HCC cell malignancy by targeting TMTC3. Furthermore, circMETTL15 absence inhibited tumor formation by regulating miR-944 and TMTC3 in vivo. In conclusion, circMETTL15 induced HCC development through the miR-944/TMTC3 pathway, raising the potential of circMETTL15 as a target for HCC therapy.
Collapse
Affiliation(s)
- Yajun Zhao
- Department of Hepatology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Jianbo Chen
- Department of Medical Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Shuzhen Xu
- Department of Gastrointestinal Surgery, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Yanwen Chen
- Department of Hepatobiliary and Pancreatic Surgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| |
Collapse
|
2
|
Cheng MZ, Yang BB, Zhan ZT, Lin SM, Fang ZP, Gao Y, Zhou WJ. MACC1 and Gasdermin-E (GSDME) regulate the resistance of colorectal cancer cells to irinotecan. Biochem Biophys Res Commun 2023; 671:236-245. [PMID: 37307707 DOI: 10.1016/j.bbrc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
Metastasis-associated in colon cancer 1 (MACC1) is an oncogene associated with the progression and metastasis of many solid cancer entities. High expression of MACC1 is found in colorectal cancer (CRC) tissues. So far, the role of MACC1 in CRC cell pyroptosis and resistance to irinotecan is unclear. The cleavage of Gasdermin-E (GSDME) is the main executors of activated pyroptosis. We found that GSDME enhanced CRC cell pyroptosis and reduced their resistance to irinotecan, while MACC1 inhibited the cleavage of GSDME and CRC cell pyroptosis, promoted CRC cell proliferation, and enhanced the resistance of CRC cells to irinotecan. Therefore, CRC cells with high MACC1 expression and low GSDME expression had higher resistance to irinotecan, while CRC cells with low MACC1 expression and high GSDME expression had lower resistance to irinotecan. Consistently, by analyzing CRC patients who received FOLFIRI (Fluorouracil + Irinotecan + Leucovorin) in combination with chemotherapy in the GEO database, we found that CRC patients with low MACC1 expression and high GSDME expression had higher survival rate. Our study suggests that the expression of MACC1 and GSDME can be used as detection markers to divide CRC patients into irinotecan resistant and sensitive groups, helping to determine the treatment strategy of patients.
Collapse
Affiliation(s)
- Ming-Zhen Cheng
- State Key Laboratory of Organ Failure Research, Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China
| | - Bo-Bo Yang
- State Key Laboratory of Organ Failure Research, Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China
| | - Ze-Tao Zhan
- State Key Laboratory of Organ Failure Research, Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China
| | - Si-Min Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, China
| | - Zhe-Ping Fang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial, Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wei-Jie Zhou
- State Key Laboratory of Organ Failure Research, Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial, Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
3
|
Pandey P, Suyal G, Pasbola K, Sharma R. NGS-based profiling identifies miRNAs and pathways dysregulated in cisplatin-resistant esophageal cancer cells. Funct Integr Genomics 2023; 23:111. [PMID: 36995552 DOI: 10.1007/s10142-023-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Esophageal cancer (EC) incidence remains to be on a global rise supported by an unchanged recurrence and 5-year survival rate owing to the development of chemoresistance. Resistance to cisplatin, one of the majorly used chemotherapeutic drugs in EC, is a major nuisance. This study sheds light on miRNA dysregulation and its inverse relation with dysregulated mRNAs to guide pathways into the manifestation of cisplatin resistance in EC. A cisplatin-resistant version of an EC cell line was established and comparative profiling by NGS with the parental cell line was employed to identify dysregulation in miRNA and mRNA levels. Protein-protein interaction network analysis was done using Cytoscape, followed by Funrich pathway analysis. Furthermore, selective significant miRNAs were validated using qRT-PCR. miRNA-mRNA integrated analysis was carried out using the Ingenuity Pathway Analysis (IPA) tool. Expression of various established resistance markers supported the successful establishment of cisplatin-resistant cell line. Whole-cell small RNA sequencing and transcriptome sequencing identified 261 miRNAs and 1892 genes to be significantly differentially expressed (DE), respectively. Pathway analysis indicated enrichment of EMT signaling, supported by NOTCH, mTOR, TNF receptor, and PI3K-mediated AKT signaling pathways, in chemoresistant cells. Validation by qRT-PCR confirmed upregulation of miR-10a-5p, miR-618, miR-99a-5p, and miR-935 and downregulation of miR-335-3p, miR-205-5p, miR-944, miR-130a-3p, and miR-429 in resistant cells. Pathway analysis that followed IPA analysis indicated that the dysregulation of these miRNAs and their target genes may be instrumental in the development and regulation of chemoresistance via p53 signaling, xenobiotic metabolism, and NRF2-mediated oxidative stress. This study concludes the interplay between miRNA and mRNA as an important aspect and occurrence in guiding the regulation, acquisition, and maintenance of chemoresistance in esophageal cancer in vitro.
Collapse
Affiliation(s)
- Prerna Pandey
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | - Geetika Suyal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
- Zonal Technology Management & Business Planning and Development Unit (ZTM & BPD Unit), Indian Council of Agricultural Research- Indian Agricultural Research Institute (ICAR-IARI), Pusa, New Delhi, India
| | - Kiran Pasbola
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India.
| |
Collapse
|
4
|
Hohmann T, Hohmann U, Dehghani F. MACC1-induced migration in tumors: Current state and perspective. Front Oncol 2023; 13:1165676. [PMID: 37051546 PMCID: PMC10084939 DOI: 10.3389/fonc.2023.1165676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Malignant tumors are still a global, heavy health burden. Many tumor types cannot be treated curatively, underlining the need for new treatment targets. In recent years, metastasis associated in colon cancer 1 (MACC1) was identified as a promising biomarker and drug target, as it is promoting tumor migration, initiation, proliferation, and others in a multitude of solid cancers. Here, we will summarize the current knowledge about MACC1-induced tumor cell migration with a special focus on the cytoskeletal and adhesive systems. In addition, a brief overview of several in vitro models used for the analysis of cell migration is given. In this context, we will point to issues with the currently most prevalent models used to study MACC1-dependent migration. Lastly, open questions about MACC1-dependent effects on tumor cell migration will be addressed.
Collapse
|
5
|
MACC1 as a Potential Target for the Treatment and Prevention of Breast Cancer. BIOLOGY 2023; 12:biology12030455. [PMID: 36979146 PMCID: PMC10045309 DOI: 10.3390/biology12030455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Metastasis associated in colon cancer 1 (MACC1) is an oncogene first identified in colon cancer. MACC1 has been identified in more than 20 different types of solid cancers. It is a key prognostic biomarker in clinical practice and is involved in recurrence, metastasis, and survival in many types of human cancers. MACC1 is significantly associated with the primary tumor, lymph node metastasis, distant metastasis classification, and clinical staging in patients with breast cancer (BC), and MACC1 overexpression is associated with reduced recurrence-free survival (RFS) and worse overall survival (OS) in patients. In addition, MACC1 is involved in BC progression in multiple ways. MACC1 promotes the immune escape of BC cells by affecting the infiltration of immune cells in the tumor microenvironment. Since the FGD5AS1/miR-497/MACC1 axis inhibits the apoptotic pathway in radiation-resistant BC tissues and cell lines, the MACC1 gene may play an important role in BC resistance to radiation. Since MACC1 is involved in numerous biological processes inside and outside BC cells, it is a key player in the tumor microenvironment. Focusing on MACC1, this article briefly discusses its biological effects, emphasizes its molecular mechanisms and pathways of action, and describes its use in the treatment and prevention of breast cancer.
Collapse
|
6
|
Novel Insights into miR-944 in Cancer. Cancers (Basel) 2022; 14:cancers14174232. [PMID: 36077769 PMCID: PMC9454979 DOI: 10.3390/cancers14174232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary miR-944 is localized in intron 4 of TP63. ΔNp63 in intron 3 of TP63 recruits the transcription factor AP-2 to promote miR-944 gene expression, which mediates epidermal differentiation induction by ΔNp63. miR-944 is dysregulated in various cancers. In squamous cell carcinoma. miR-944 can target and inhibit 27 protein-coding genes, thereby regulating cell cycle, proliferation, apoptosis, epithelial mesenchymal transition, cancer cell invasion and migration, and other cell behaviors. The genes targeted by miR-944 are involved in three signaling pathways, including the Wnt/β-catenin pathway, Jak/STAT3 pathway, and PI3K/AKT pathway. miR-944 was regulated by a total of 11 competing endogenous RNAs, including 6 circular RNAs and 5 long non-coding RNAs. Abnormally expressed miR-944 can act as an independent prognostic factor and is closely related to tumor invasion, lymph node metastasis, TNM staging, and drug resistance. miR-944 is expected to become a critical biomarker with great clinical application value in cancer. Abstract miRNA is a class of endogenous short-chain non-coding RNAs consisting of about 22 nucleotides. miR-944 is located in the fourth intron of the TP63 gene in the 3q28 region. miR-944 is abnormally expressed in cancers in multiple systems including neural, endocrine, respiratory, reproductive, and digestive systems. miR-944 can target at least 27 protein-coding genes. miR-944 can regulate a series of cell behaviors, such as cell cycle, proliferation, invasion and migration, EMT, apoptosis, etc. miR-944 participates in the networks of 11 ceRNAs, including six circRNAs and five lncRNAs. miR-944 is involved in three signaling pathways. The abnormal expression of miR-944 is closely related to the clinicopathological conditions of various cancer patients. Deregulated expression of miR-944 is significantly associated with clinicopathology and prognosis in cancer patients. In addition, miR-944 is also associated with the development of DDP, RAPA, DOX, and PTX resistance in cancer cells. miR-944 is involved in the anticancer molecular mechanisms of matrine and Rhenium-liposome drugs. In conclusion, this work systematically summarizes the related findings of miR-944, which will provide potential hints for follow-up research on miR-944.
Collapse
|
7
|
Culture Condition of Bone Marrow Stromal Cells Affects Quantity and Quality of the Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms23031017. [PMID: 35162938 PMCID: PMC8834965 DOI: 10.3390/ijms23031017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) released by bone marrow stromal cells (BMSCs) have been shown to act as a transporter of bioactive molecules such as RNAs and proteins in the therapeutic actions of BMSCs in various diseases. Although EV therapy holds great promise to be a safer cell-free therapy overcoming issues related to cell therapy, manufacturing processes that offer scalable and reproducible EV production have not been established. Robust and scalable BMSC manufacturing methods have been shown to enhance EV production; however, the effects on EV quality remain less studied. Here, using human BMSCs isolated from nine healthy donors, we examined the effects of high-performance culture media that can rapidly expand BMSCs on EV production and quality in comparison with the conventional culture medium. We found significantly increased EV production from BMSCs cultured in the high-performance media without altering their multipotency and immunophenotypes. RNA sequencing revealed that RNA contents in EVs from high-performance media were significantly reduced with altered profiles of microRNA enriched in those related to cellular growth and proliferation in the pathway analysis. Given that pre-clinical studies at the laboratory scale often use the conventional medium, these findings could account for the discrepancy in outcomes between pre-clinical and clinical studies. Therefore, this study highlights the importance of selecting proper culture conditions for scalable and reproducible EV manufacturing.
Collapse
|
8
|
Mao C, Wen H, Zhang Y, Yu G, Ge Q. ciRS-7 enhances the progression of hepatocellular carcinoma through miR-944/NOX4 pathway. Crit Rev Eukaryot Gene Expr 2022; 32:11-24. [DOI: 10.1615/critreveukaryotgeneexpr.2022039225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Zheng H, Fu Q, Ma K, Shi S, Fu Y. Circ_0079558 promotes papillary thyroid cancer progression by binding to miR-26b-5p to activate MET/AKT signaling. Endocr J 2021; 68:1247-1266. [PMID: 34565758 DOI: 10.1507/endocrj.ej20-0498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Circular RNAs (circRNAs) are a group of non-coding RNAs featured by covalently closed circular structure. CircRNA_0079558 (circ_0079558) is derived from RAPGEF5 gene, and it has been found to be significantly up-regulated in papillary thyroid carcinoma (PTC). However, the role and working mechanism of circ_0079558 in PTC progression have never been illustrated. The levels of circ_0079558 and MET proto-oncogene, receptor tyrosine kinase (MET) were up-regulated in PTC tissues and cell lines, as evidenced by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay. The silencing of circ_0079558 or MET restrained cell proliferation, migration and invasion whereas triggered cell apoptosis in PTC cells, as verified by Cell Counting Kit-8 (CCK8) assay, plate colony formation assay, transwell invasion assay, wound healing assay and flow cytometry. Through using MET specific inhibitor PHA665752, we found that circ_0079558 overexpression enhanced the malignant behaviors of PTC cells through activating MET/AKT pathway. Through dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay, microRNA-26b-5p (miR-26b-5p) was identified to be the intermediary molecular between circ_0079558 and MET, and circ_0079558 knockdown reduced the expression of MET partly through elevating miR-26b-5p in PTC cells. The miR-198/FGFR1 pathway was identified as another signal axis downstream of circ_0079558, and the co-overexpression of FGFR1 and MET largely rescued the proliferation ability of circ_0079558-silenced PTC cells. Through xenograft tumor model, we found that circ_0079558 silencing restrained xenograft tumor growth in vivo. In conclusion, circ_0079558 facilitated the proliferation and motility whereas inhibited the apoptosis of PTC cells largely through mediating miR-26b-5p/MET/AKT signaling.
Collapse
Affiliation(s)
- Haibo Zheng
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qingfeng Fu
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Kaili Ma
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Shuai Shi
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Yantao Fu
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| |
Collapse
|
10
|
Ma S, Gu X, Shen L, Chen Y, Qian C, Shen X, Ju S. CircHAS2 promotes the proliferation, migration, and invasion of gastric cancer cells by regulating PPM1E mediated by hsa-miR-944. Cell Death Dis 2021; 12:863. [PMID: 34556632 PMCID: PMC8460735 DOI: 10.1038/s41419-021-04158-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is considered one of the most common gastrointestinal malignancies worldwide. Circular RNAs (circRNAs) are a new class of endogenous noncoding RNAs, which can be used as biomarkers and therapeutic targets for many tumors. However, the role and potential regulatory mechanisms of circRNAs in GC remain unclear. In this study, we demonstrated that a specific circRNA, circHAS2, was upregulated in GC tissues and cells and was positively correlated with tumor metastasis. In vitro experiments demonstrated that circHAS2 knockdown or the addition of hsa-miR-944 mimics inhibited the proliferation, migration, and invasion ability of GC cells and affected the epithelial-mesenchymal transition. In addition, hsa-miR-944 interacted with protein phosphatase, Mg2+/Mn2+-dependent 1E (PPM1E), and was found to be a target gene of circHAS2. The upregulation of PPM1E reversed the effects of circHAS2 knockout on GC cells. The circHAS2/hsa-miR-944/PPM1E axis may be involved in the progression of GC; thus, circHAS2 may be a potential biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xinliang Gu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Lei Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yinhao Chen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chen Qian
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xianjuan Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
11
|
Su R, Zhao E, Zhang J. miR-496 inhibits proliferation via LYN and AKT pathway in gastric cancer. Open Med (Wars) 2021; 16:1206-1214. [PMID: 34514167 PMCID: PMC8389501 DOI: 10.1515/med-2021-0313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) operate as tumor suppressor or carcinogen to regulate cell proliferation, metastasis, invasion, differentiation, apoptosis, and metabolic process. In the present research, we investigated the effect and mechanism of miR-496 in human gastric cancer cells. miR-496 was downregulated in two gastric cancer cell lines, AGS and MKN45, compared with normal gastric epithelial cell line GES-1. miR-496 mimics inhibited the proliferation of AGS cells after the transfection for 48 and 72 h. The migration and invasion of AGS cells were also inhibited by the transfection of miR-496 mimics. miR-496 mimics induced the apoptosis through upregulating the levels of Bax and Active Caspase 3 and downregulating the levels of Bcl-2 and Total Caspase 3. Bioinformatics analysis showed that there was a binding site between miR-496 and Lyn kinase (LYN). miR-496 mimics could inhibit the expression of LYN in AGS cells. LYN overexpression blocked the inhibition of tumor cell growth, as well as the inhibition of AKT/mTOR signaling pathway induced by miR-496. In conclusion, miR-496 inhibited the proliferation through the AKT/mTOR signaling pathway via targeting LYN in gastric cancer cells. Our research provides a new potential target for clinical diagnosis and targeted treatment for gastric cancer.
Collapse
Affiliation(s)
- Rui Su
- Department of Gastrointestinal Surgery, Affiliated Hospital of Chengde Medical College, 067000, Chengde, China
| | - Enhong Zhao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Chengde Medical College, 067000, Chengde, China
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Guo Q, Geletu Q, Zhang Y. ZNF219 protects human lens epithelial cells against H 2O 2-induced injury via targeting SOX9 through activating AKT/GSK3β pathway. Hum Exp Toxicol 2021; 40:S7-S15. [PMID: 34167360 DOI: 10.1177/09603271211027944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Opacity of the lens caused by cataracts could lead to severe visual impairment and even blindness. Oxidative stress caused by exposure of lens epithelial cells to hydrogen peroxide (H2O2) can lead to DNA damage and impair cell function. Therefore, how to prevent lens epithelial cells from being harmed by H2O2 is an urgent problem. The ZNF219 gene belongs to the Kruppel like zinc finger gene family, which is involved in a variety of biological processes. In this study, we found the low expression of ZNF219 in H2O2-induced HLE-B3 cells. We further noticed ZNF219 could improve the survival rate of H2O2-induced HLE-B3 cells, and inhibit the apoptosis and oxidative stress response. Mechanically, ZNF219 protected human lens epithelial cells against H2O2-induced injury via targeting SOX9 through activating AKT/GSK3β pathway. We therefore thought ZNF219 was a key protective protein in the oxidative damage of human lens epithelial cells and the pathogenesis of cataract.
Collapse
Affiliation(s)
- Q Guo
- Department of Ophtalmology, Inner Mongolia Chaoju Eye Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Q Geletu
- Department of Ophtalmology, Affiliated 534199Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People's Republic of China
| | - Y Zhang
- 117972The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, P. R. China
| |
Collapse
|
13
|
Zhu H, Lu Q, Lu Q, Shen X, Yu L. Matrine Regulates Proliferation, Apoptosis, Cell Cycle, Migration, and Invasion of Non-Small Cell Lung Cancer Cells Through the circFUT8/miR-944/YES1 Axis. Cancer Manag Res 2021; 13:3429-3442. [PMID: 33907466 PMCID: PMC8065209 DOI: 10.2147/cmar.s290966] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 01/20/2023] Open
Abstract
Background Non-small cell lung carcinoma (NSCLC) is the major histological subtype of cancer cases. In the present study, we investigated the association between Matrine, an active component of Chinese medicine, and circFUT8 in NSCLC cells. Methods The proliferation ability of NSCLC cells was assessed by MTT and colony-forming assays. Flow cytometry assay was performed to show the apoptosis and cell cycle distribution in NSCLC cells. The protein expression levels of Bcl-2, Cleaved Caspase-3 (C-Caspase3), and YES proto-oncogene 1 (YES1) were measured by Western blot assay. Migration and invasion of NSCLC cells were determined by transwell assay. The expression levels of circFUT8, miR-944 and YES1 were quantified by real-time quantitative polymerase chain reaction (RT-qPCR) assay. The interaction relationship between miR-944 and circFUT8 or YES1 was confirmed by dual-luciferase reporter assay. The anti-tumor role of Matrine in vivo was explored by a xenograft experiment. Results Matrine functioned as a carcinoma inhibitor by repressing proliferation, cell cycle process, migration, and invasion while inducing apoptosis in NSCLC cells. Importantly, overexpression of circFUT8 counteracted Matrine-induced effects on NSCLC cells. MiR-944, interacted with YES1, was a target of circFUT8. Under Matrine condition, overexpression of circFUT8 increased proliferation, migration, and invasion while inhibited apoptosis, which was abolished by the upregulation of miR-944. Whereas the silencing of YES1 counteracted miR-944 inhibitor-induced effects on NSCLC cells. Eventually, we also confirmed that Matrine impeded NSCLC tumor growth in vivo. Conclusion Matrine regulated proliferation, apoptosis, cell cycle, migration, and invasion of NSCLC cells through the circFUT8/miR-944/YES1 axis, which provided novel information for Matrine in NSCLC.
Collapse
Affiliation(s)
- Hailing Zhu
- Department of Emergency, Jingmen No. 1 People's Hospital, Jingmen, Hubei, People's Republic of China
| | - Quan Lu
- Department of Neurology, Jingmen No. 1 People's Hospital, Jingmen, Hubei, People's Republic of China
| | - Qing Lu
- Department of Respiratory, Jingmen No. 1 People's Hospital, Jingmen, Hubei, People's Republic of China
| | - Xuemin Shen
- Department of Oncology, Jingmen No. 1 People's Hospital, Jingmen, Hubei, People's Republic of China
| | - Liuyang Yu
- Department of Oncology, Jingmen No. 2 People's Hospital, Jingmen, Hubei, People's Republic of China
| |
Collapse
|
14
|
Tang J, Gao W, Liu G, Sheng W, Zhou J, Dong Q, Dong M. miR-944 Suppresses EGF-Induced EMT in Colorectal Cancer Cells by Directly Targeting GATA6. Onco Targets Ther 2021; 14:2311-2325. [PMID: 33833529 PMCID: PMC8020141 DOI: 10.2147/ott.s290567] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background miR-944 belongs to the MicroRNAs family, as shown in our previous study, and is essential in the colorectal cancer (CRC) progression. It is negatively associated with invasion depth and lymph node status. Epithelial-mesenchymal transition (EMT) is essential in tumor invasion and metastasis. However, the relationship between miR-944 and EMT in CRC is unknown and should be further investigated. Methods Epithelial–mesenchymal transition (EMT) progression in CRC cell lines was detected with Cell morphology and Western blotting. CRC cell migration and invasion were examined using Transwell assays. Transcriptome and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. The potential pathway of miR-944 and GATA6 were predicted using KEGG analysis. Colocalization was validated using immunofluorescence and Immunohistochemistry. Nuclear and Cytoplasmic Protein Extraction assays were conducted to determine the effects of miR-944 on Wnt/β-catenin signaling. Results We found that miR‑944 influences EGF-induced EMT malignant phenotype in vitro. KEGG analyses showed that miR-944 and GATA6 are associated with EMT related pathways, wnt signaling pathways. On the other hand, Western Blot analyses showed that miR-944 can regulate EMT and wnt-β-catenin pathway-related protein, including β-catenin, ZEB1, snail1 via GATA6 regulation. miR-944 also abrogates E-ca after EGF induction. Immunohistochemistry (IHC) and Immunofluorescence (IF) co-expression showed that GATA6 expression is positively associated with β-catenin and ZEB1. GATA6 silencing can reverse EMT malignant phenotype and alterations of related protein induced by miR-944. Quantitative polymerase chain reaction analysis results showed that miR-944 is negatively associated with the UICC stage (P= 0.02), lymph nodes (p=0.04), and liver metastasis (p=0.03). Moreover, patients with high miR-944 expression have better survival (p=0.045). We finally combined miR-944 and GATA6 and found that miR-944/GATA6 ratio could be a novel prognostic biomarker in the TCGA dataset and it is an independent risk prognosis factor (p=0.045). Conclusion Our results suggest that miR-944 suppresses the aggressive biological processes by directly repressing GATA6 expression and could be a potential candidate for therapeutic applications in CRC.
Collapse
Affiliation(s)
- JingTong Tang
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Wei Gao
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Gang Liu
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - WeiWei Sheng
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - JianPing Zhou
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Qi Dong
- Department of General Surgery, The People's Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ming Dong
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| |
Collapse
|
15
|
Lv J, Li Q, Ma R, Wang Z, Yu Y, Liu H, Miao Y, Jiang S. Long Noncoding RNA FGD5-AS1 Knockdown Decrease Viability, Migration, and Invasion of Non-Small Cell Lung Cancer (NSCLC) Cells by Regulating the MicroRNA-944/MACC1 Axis. Technol Cancer Res Treat 2021; 20:1533033821990090. [PMID: 33550920 PMCID: PMC7887693 DOI: 10.1177/1533033821990090] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Long noncoding RNA FGD5 antisense RNA 1 (FGD5-AS1) participates in the regulation of non-small cell lung cancer (NSCLC) progression, but the underlying mechanisms are not fully revealed. This study aimed to determine the regulatory mechanism of FGD5-AS1 on the viability, migration, and invasion of NSCLC cells. METHODS QRT-PCR was performed to measure the expression of FGD5-AS1, microRNA-944 (miR-944), and MACC1 in NSCLC. The correlation between FGD5-AS1 and clinicopathological features of NSCLC patients was analyzed. The viability of NSCLC cells were detected using MTT assay, and the migration and invasion were measured by transwell assay. Additionally, dual-luciferase reporter assay was used to demonstrate the interactions among FGD5-AS1, miR-944, and MACC1. Furthermore, exosomes were isolated from NSCLC cells and identified by transmission electron microscopy (TEM) and western blot. Then, the macrophages treated with exosomes were co-cultured with NSCLC cells to assess the effect of exosomes containing lower FGD5-AS1 level on NSCLC. RESULTS The expression of FGD5-AS1 and MACC1 was increased in NSCLC, but miR-944 expression was decreased. FGD5-AS1 expression had significantly correlation with TNM stage and metastasis in NSCLC patients. FGD5-AS1 knockdown decreased the viability, migration, and invasion of NSCLC cells. Additionally, FGD5-AS1 and MACC1 were both targeted by miR-944 with the complementary binding sites at 3' UTR. In the feedback experiments, miR-944 inhibition or MACC1 overexpression reversed the reduction effect of FGD5-AS1 knockdown on the tumorigenesis of NSCLC. Moreover, silencing of FGD5-AS1 suppressed macrophages M2 polarization, and eliminated the promoting effects of exosomes mediated macrophages on NSCLC cell migration and invasion. CONCLUSIONS FGD5-AS1 knockdown attenuated viability, migration, and invasion of NSCLC cells by regulating the miR-944/MACC1 axis, providing a new therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jian Lv
- Department of Respiratory and Critical Care Medicine, Shandong
Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan,
Shandong, China
- The Third Department of Oncology, Linyi Cancer Hospital, Linyi,
Shandong, China
| | - Qinyong Li
- The Third Department of Oncology, Linyi Cancer Hospital, Linyi,
Shandong, China
| | - Ruiqiang Ma
- The Third Department of Oncology, Linyi Cancer Hospital, Linyi,
Shandong, China
| | - Zhen Wang
- The Third Department of Oncology, Linyi Cancer Hospital, Linyi,
Shandong, China
| | - Yingyu Yu
- The Third Department of Oncology, Linyi Cancer Hospital, Linyi,
Shandong, China
| | - Huan Liu
- The Third Department of Oncology, Linyi Cancer Hospital, Linyi,
Shandong, China
| | - Yuanxiu Miao
- The Third Department of Oncology, Linyi Cancer Hospital, Linyi,
Shandong, China
| | - Shujuan Jiang
- Department of Respiratory and Critical Care Medicine, Shandong
Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan,
Shandong, China
- Department of Respiratory and Critical Care Medicine, Shandong
Provincial Hospital Affiliated to Shandong First Medical University, Jinan,
Shandong, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan,
Shandong, China
| |
Collapse
|
16
|
Yao Y, Chen S, Lu N, Yin Y, Liu Z. LncRNA JPX overexpressed in oral squamous cell carcinoma drives malignancy via miR-944/CDH2 axis. Oral Dis 2020; 27:924-933. [PMID: 32881231 DOI: 10.1111/odi.13626] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) is a common head and neck cancer with high incidence. Numerous reports have elucidated that long non-coding RNAs (lncRNAs) serve as crucial regulatory factors in various diseases including cancer. Nonetheless, the role of lncRNA JPX in OSCC is still not elaborated. SUBJECTS AND METHODS In our research, we detected the expression of lncRNA JPX through qRT-PCR. Colony formation, EdU staining, Transwell, TUNEL, and caspase-3 activity assays were applied for estimating the function of lncRNA JPX in OSCC. RIP, pull-down, and luciferase reporter experiments were adopted to examine the interrelations between lncRNA JPX, miR-944, and CDH2. RESULTS LncRNA JPX was discovered as highly expressed in OSCC cells. Silencing lncRNA JPX restrained OSCC cell proliferation, migration, and invasion. Interestingly, lncRNA JPX bound with miR-944 and then augmented CDH2 via a competing endogenous RNA (ceRNA) mechanism. Importantly, overexpressed CDH2 recovered the suppression of silenced lncRNA JPX on the oncogenic behaviors of OSCC cells. CONCLUSIONS In short, lncRNA JPX contributes to OSCC cell proliferation, migration, and invasion via miR-944/CDH2 axis, which offers a new direction for potential targeted treatment of OSCC.
Collapse
Affiliation(s)
- Yuan Yao
- Stomatology Department, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Shaoshan Chen
- Stomatology Department, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Na Lu
- Stomatology Department, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yue Yin
- Stomatology Department, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Zhiwen Liu
- Stomatology Department, the Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
17
|
Mao D, Jie Y, Lv Y. LncRNA SNHG6 Induces Epithelial-Mesenchymal Transition of Pituitary Adenoma Via Suppressing MiR-944. Cancer Biother Radiopharm 2020; 37:246-255. [PMID: 32935999 PMCID: PMC9127839 DOI: 10.1089/cbr.2020.3587] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Pituitary adenoma (PA) is a common primary brain tumor with invasive properties. Despite that long noncoding RNA (lncRNA) small nucleolar RNA host gene 6 (SNHG6) exerts oncogenic function in cancer cells and that miR-944 inhibits epithelial–mesenchymal transition (EMT) of cancer cells are well documented, few studies have explored the function and mechanism of SNHG6 and miR-944 in invasive pituitary adenoma (IPA). Materials and Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expressions of SNHG6 and miR-944 in PA samples. Human PA cell line HP75 was used as a cell model. The biological effects of SNHG6 and miR-944 on HP75 cells were investigated with cell counting kit-8 (CCK-8) assay, Transwell assay, and scratch healing assay in vitro, respectively. Markers of EMT, including E-cadherin and vimentin, were detected by Western blot. Interactions between SNHG6 and miR-944, miR-944 and RAB11A were determined by bioinformatics analysis, qRT-PCR, and dual luciferase reporter assay. Results: SNHG6 was significantly upregulated in IPA samples, whereas miR-944 was downregulated. SNHG6 markedly promoted viability, migration, invasion, and EMT of PA cells, whereas miR-944 transfection had the opposite effects. SNHG6 could downregulate miR-944, and there was a negative correlation between SNHG6 expression and miR-944 expression in IPA samples. Besides, it was confirmed that miR-944 could pair with the 3′-untranslated region of RAB11A and repress its expression. Conclusions: This study authenticates that the SNHG6/miR-994/RAB11A axis plays a crucial role in regulating proliferation, migration, invasion, and EMT of IPA cells. SNHG6 and miR-994 can serve as novel valuable therapeutic targets for IPA.
Collapse
Affiliation(s)
- Dandan Mao
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou, China
| | - Yuanqing Jie
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou, China
| | - Yao Lv
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
18
|
Lin C, Zou Y, Li R, Liu D. Long non‑coding RNA PRNCR1 exerts oncogenic effects in tongue squamous cell carcinoma in vitro and in vivo by sponging microRNA‑944 and thereby increasing HOXB5 expression. Int J Mol Med 2020; 46:119-130. [PMID: 32319550 PMCID: PMC7255465 DOI: 10.3892/ijmm.2020.4581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/21/2020] [Indexed: 01/26/2023] Open
Abstract
A long non-coding RNA (lncRNA) called prostate cancer-associated non-coding RNA 1 (PRNCR1) serves crucial roles in the aggressive phenotypes of colorectal cancer and non-small cell lung cancer. However, there is little research on the expression profile, clinical value and detailed functions of PRNCR1 in tongue squamous cell carcinoma (TSCC). The aim of the present study was to determine PRNCR1 expression in TSCC and to examine the involvement of PRNCR1 in TSCC progression. The molecular mechanisms behind the oncogenic effects of PRNCR1 in TSCC cells were also investigated. PRNCR1 was revealed to be upregulated in TSCC tumors and cell lines. The high PRNCR1 expression showed a significant correlation with tumor size, clinical stage, lymph node metastasis, and shorter overall survival times among patients with TSCC. A PRNCR1-knockdown reduced TSCC cell proliferation, migration and invasion, and increased apoptosis in vitro. Additionally, the PRNCR1-knockdown slowed down in vivo tumor growth of TSCC cells. With regards to the mechanism, PRNCR1 acted as a competing endogenous RNA on microRNA-944 (miR-944) in TSCC cells, and the effects of the PRNCR1-knockdown were reversed by an miR-944-knockdown. HOXB5 was validated as a direct target gene of miR-944 in TSCC cells, and HOXB5 expression was found to be positively regulated by PRNCR1. Furthermore, resumption of HOXB5 expression reversed the tumor-suppressive actions of miR-944 in TSCC cells. In conclusion, PRNCR1 acts as an oncogenic lncRNA in TSCC through the upregulation of HOXB5 by sponging miR-944, thereby indicating a potential therapeutic target in TSCC.
Collapse
Affiliation(s)
- Cong Lin
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Yanan Zou
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Ruijing Li
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Daofeng Liu
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| |
Collapse
|
19
|
Liu R, Zhou M, Zhang P, Zhao Y, Zhang Y. Cell proliferation and invasion is promoted by circSERPINA3 in nasopharyngeal carcinoma by regulating miR-944/MDM2 axis. J Cancer 2020; 11:3910-3918. [PMID: 32328195 PMCID: PMC7171482 DOI: 10.7150/jca.42799] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
Growing evidence has demonstrated that in tumor progression, circular RNAs (circRNAs) play important roles. However, the roles of circRNAs in nasopharyngeal carcinoma (NPC) have not been fully elucidated. In this study, it was demonstrated that that hsa_circ_0033074 (circSERPINA3) expression was found to be significantly upregulated in NPC tissues and cell lines. CircSERPINA3 inhibition significantly attenuated the invasion and proliferation abilities of NPC cells. The mechanism by which circSERPINA3 interacted with miR-944 was identified and MDM2 was demonstrated to function as a target gene of miR-944. Rescue experiments showed that miR-944 inhibitors or MDM2 overexpression reserved the effects of circSERPINA3 knockdown on NPC progression. Therefore, our study uncovered the circSERPINA3/miR-944/MDM2 axis in NPC, which may be a potential NPC therapeutic target.
Collapse
Affiliation(s)
- Rui Liu
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Minghui Zhou
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Puwen Zhang
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulin Zhao
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yujie Zhang
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
20
|
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020; 9:E276. [PMID: 31979244 PMCID: PMC7072450 DOI: 10.3390/cells9020276] [Citation(s) in RCA: 810] [Impact Index Per Article: 162.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) represent a class of small, non-coding RNAs with the main roles of regulating mRNA through its degradation and adjusting protein levels. In recent years, extraordinary progress has been made in terms of identifying the origin and exact functions of miRNA, focusing on their potential use in both the research and the clinical field. This review aims at improving the current understanding of these molecules and their applicability in the medical field. A thorough analysis of the literature consulting resources available in online databases such as NCBI, PubMed, Medline, ScienceDirect, and UpToDate was performed. There is promising evidence that in spite of the lack of standardized protocols regarding the use of miRNAs in current clinical practice, they constitute a reliable tool for future use. These molecules meet most of the required criteria for being an ideal biomarker, such as accessibility, high specificity, and sensitivity. Despite present limitations, miRNAs as biomarkers for various conditions remain an impressive research field. As current techniques evolve, we anticipate that miRNAs will become a routine approach in the development of personalized patient profiles, thus permitting more specific therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dana Claudia Thompson
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Madalina Gabriela Barbu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Oana Larisa Bugnar
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Andreea Boboc
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dragos Cretoiu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania;
| |
Collapse
|
21
|
Feng YL, Chen DQ, Vaziri ND, Guo Y, Zhao YY. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev 2020; 40:54-78. [PMID: 31131921 DOI: 10.1002/med.21596] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
Tissue fibrosis and cancer both lead to high morbidity and mortality worldwide; thus, effective therapeutic strategies are urgently needed. Because drug resistance has been widely reported in fibrotic tissue and cancer, developing a strategy to discover novel targets for targeted drug intervention is necessary for the effective treatment of fibrosis and cancer. Although many factors lead to fibrosis and cancer, pathophysiological analysis has demonstrated that tissue fibrosis and cancer share a common process of epithelial-mesenchymal transition (EMT). EMT is associated with many mediators, including transcription factors (Snail, zinc-finger E-box-binding protein and signal transducer and activator of transcription 3), signaling pathways (transforming growth factor-β1, RAC-α serine/threonine-protein kinase, Wnt, nuclear factor-kappa B, peroxisome proliferator-activated receptor, Notch, and RAS), RNA-binding proteins (ESRP1 and ESRP2) and microRNAs. Therefore, drugs targeting EMT may be a promising therapy against both fibrosis and tumors. A large number of compounds that are synthesized or derived from natural products and their derivatives suppress the EMT by targeting these mediators in fibrosis and cancer. By targeting EMT, these compounds exhibited anticancer effects in multiple cancer types, and some of them also showed antifibrotic effects. Therefore, drugs targeting EMT not only have both antifibrotic and anticancer effects but also exert effective therapeutic effects on multiorgan fibrosis and cancer, which provides effective therapy against fibrosis and cancer. Taken together, the results highlighted in this review provide new concepts for discovering new antifibrotic and antitumor drugs.
Collapse
Affiliation(s)
- Ya-Long Feng
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Dan-Qian Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Nosratola D Vaziri
- Department of Medicine, University of California Irvine, Irvine, California
| | - Yan Guo
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
22
|
Wang Y, Wang F, He J, Du J, Zhang H, Shi H, Chen Y, Wei Y, Xue W, Yan J, Feng Y, Gao Y, Li D, Han J, Zhang J. miR-30a-3p Targets MAD2L1 and Regulates Proliferation of Gastric Cancer Cells. Onco Targets Ther 2019; 12:11313-11324. [PMID: 31908496 PMCID: PMC6927793 DOI: 10.2147/ott.s222854] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose This study was done to investigate the inhibition effects of miR-30a-3p on mitotic arrest deficient 2 like 1 (MAD2L1) expression and the proliferation of gastric cancer cells. Patients and methods Cluster analysis and the TCGA database were used to screen the key genes highly expressed in gastric cancer. Based on the LinkedOmics website, the correlation between the miR-30a-3p and the cell cycle-related target gene MAD2L1 in gastric cancer was analyzed. The mRNA and protein expression levels were detected with the quantitative real-time PCR and Western blot analysis. The cell proliferation and cell cycle were also detected and analyzed. Results Bioinformatics analysis showed that MAD2L1 was highly expressed in tumor tissues compared with normal tissues. Compared with normal tissues, the miR-30a-3p was significantly decreased in the gastric cancer tissues. Moreover, MAD2L1 was significantly negatively correlated with the miR-30a-3p expression. Furthermore, over-expression of miR-30a-3p decreased the expression of MAD2L1 at the protein level, which inhibited the proliferation of AGS and BGC-823 gastric cancer cells. In addition, the cell cycles of AGS and BGC-823 cells were arrested at the G0/G1 phase. Conclusion MAD2L1 is a pro-oncogene which is up-regulated in gastric cancer. The miR-30a-3p can down-regulate the MAD2L1 expression, inhibiting the proliferation of gastric cancer cells and affect the cell cycle.
Collapse
Affiliation(s)
- Yu Wang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Fenghui Wang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Jing He
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Juan Du
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Huahua Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Haiyan Shi
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Yani Chen
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Yameng Wei
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Wanjuan Xue
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Jing Yan
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Yun Feng
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Yi Gao
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Dan Li
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Jiming Han
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| | - Jing Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, Shaanxi 716000, People's Republic of China
| |
Collapse
|
23
|
Lopez-Rincon A, Martinez-Archundia M, Martinez-Ruiz GU, Schoenhuth A, Tonda A. Automatic discovery of 100-miRNA signature for cancer classification using ensemble feature selection. BMC Bioinformatics 2019; 20:480. [PMID: 31533612 PMCID: PMC6751684 DOI: 10.1186/s12859-019-3050-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) are noncoding RNA molecules heavily involved in human tumors, in which few of them circulating the human body. Finding a tumor-associated signature of miRNA, that is, the minimum miRNA entities to be measured for discriminating both different types of cancer and normal tissues, is of utmost importance. Feature selection techniques applied in machine learning can help however they often provide naive or biased results. Results An ensemble feature selection strategy for miRNA signatures is proposed. miRNAs are chosen based on consensus on feature relevance from high-accuracy classifiers of different typologies. This methodology aims to identify signatures that are considerably more robust and reliable when used in clinically relevant prediction tasks. Using the proposed method, a 100-miRNA signature is identified in a dataset of 8023 samples, extracted from TCGA. When running eight-state-of-the-art classifiers along with the 100-miRNA signature against the original 1046 features, it could be detected that global accuracy differs only by 1.4%. Importantly, this 100-miRNA signature is sufficient to distinguish between tumor and normal tissues. The approach is then compared against other feature selection methods, such as UFS, RFE, EN, LASSO, Genetic Algorithms, and EFS-CLA. The proposed approach provides better accuracy when tested on a 10-fold cross-validation with different classifiers and it is applied to several GEO datasets across different platforms with some classifiers showing more than 90% classification accuracy, which proves its cross-platform applicability. Conclusions The 100-miRNA signature is sufficiently stable to provide almost the same classification accuracy as the complete TCGA dataset, and it is further validated on several GEO datasets, across different types of cancer and platforms. Furthermore, a bibliographic analysis confirms that 77 out of the 100 miRNAs in the signature appear in lists of circulating miRNAs used in cancer studies, in stem-loop or mature-sequence form. The remaining 23 miRNAs offer potentially promising avenues for future research. Electronic supplementary material The online version of this article (10.1186/s12859-019-3050-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Lopez-Rincon
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, David de Wied building,Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands.
| | - Marlet Martinez-Archundia
- Laboratorio de Modelado Molecular, Bioinformática y diseño de fármacos. Departamento de Posgrado. Escuela Superior de Medicina del Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Gustavo U Martinez-Ruiz
- Faculty of Medicine, National Autonomous University of Mexico; Federico Gomez Children's Hospital of Mexico, Mexico City, Mexico
| | | | - Alberto Tonda
- UMR 782 GMPA, Université Paris-Saclay, INRA, AgroParisTech, Thiverval-Grignon, France
| |
Collapse
|
24
|
Decoding and targeting the molecular basis of MACC1-driven metastatic spread: Lessons from big data mining and clinical-experimental approaches. Semin Cancer Biol 2019; 60:365-379. [PMID: 31430556 DOI: 10.1016/j.semcancer.2019.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022]
Abstract
Metastasis remains the key issue impacting cancer patient survival and failure or success of cancer therapies. Metastatic spread is a complex process including dissemination of single cells or collective cell migration, penetration of the blood or lymphatic vessels and seeding at a distant organ site. Hundreds of genes involved in metastasis have been identified in studies across numerous cancer types. Here, we analyzed how the metastasis-associated gene MACC1 cooperates with other genes in metastatic spread and how these coactions could be exploited by combination therapies: We performed (i) a MACC1 correlation analysis across 33 cancer types in the mRNA expression data of TCGA and (ii) a comprehensive literature search on reported MACC1 combinations and regulation mechanisms. The key genes MET, HGF and MMP7 reported together with MACC1 showed significant positive correlations with MACC1 in more than half of the cancer types included in the big data analysis. However, ten other genes also reported together with MACC1 in the literature showed significant positive correlations with MACC1 in only a minority of 5 to 15 cancer types. To uncover transcriptional regulation mechanisms that are activated simultaneously with MACC1, we isolated pan-cancer consensus lists of 1306 positively and 590 negatively MACC1-correlating genes from the TCGA data and analyzed each of these lists for sharing transcription factor binding motifs in the promotor region. In these lists, binding sites for the transcription factors TELF1, ETS2, ETV4, TEAD1, FOXO4, NFE2L1, ELK1, SP1 and NFE2L2 were significantly enriched, but none of them except SP1 was reported in combination with MACC1 in the literature. Thus, while some of the results of the big data analysis were in line with the reported experimental results, hypotheses on new genes involved in MACC1-driven metastasis formation could be generated and warrant experimental validation. Furthermore, the results of the big data analysis can help to prioritize cancer types for experimental studies and testing of combination therapies.
Collapse
|
25
|
Klinge CM, Piell KM, Tooley CS, Rouchka EC. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci Rep 2019; 9:9430. [PMID: 31263129 PMCID: PMC6603045 DOI: 10.1038/s41598-019-45636-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are dysregulated in breast cancer. Heterogeneous Nuclear Ribonucleoprotein A2/B1 (HNRNPA2/B1) is a reader of the N(6)-methyladenosine (m6A) mark in primary-miRNAs (pri-miRNAs) and promotes DROSHA processing to precursor-miRNAs (pre-miRNAs). We examined the expression of writers, readers, and erasers of m6A and report that HNRNPA2/B1 expression is higher in tamoxifen-resistant LCC9 breast cancer cells as compared to parental, tamoxifen-sensitive MCF-7 cells. To examine how increased expression of HNRNPA2/B1 affects miRNA expression, HNRNPA2/B1 was transiently overexpressed (~5.4-fold) in MCF-7 cells for whole genome miRNA profiling (miRNA-seq). 148 and 88 miRNAs were up- and down-regulated, respectively, 48 h after transfection and 177 and 172 up- and down-regulated, respectively, 72 h after transfection. MetaCore Enrichment analysis identified progesterone receptor action and transforming growth factor β (TGFβ) signaling via miRNA in breast cancer as pathways downstream of the upregulated miRNAs and TGFβ signaling via SMADs and Notch signaling as pathways of the downregulated miRNAs. GO biological processes for mRNA targets of HNRNPA2/B1-regulated miRNAs included response to estradiol and cell-substrate adhesion. qPCR confirmed HNRNPA2B1 downregulation of miR-29a-3p, miR-29b-3p, and miR-222 and upregulation of miR-1266-5p, miR-1268a, miR-671-3p. Transient overexpression of HNRNPA2/B1 reduced MCF-7 sensitivity to 4-hydroxytamoxifen and fulvestrant, suggesting a role for HNRNPA2/B1 in endocrine-resistance.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Christine Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Eric C Rouchka
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
26
|
Integrating microRNA and mRNA expression in rapamycin-treated T-cell acute lymphoblastic leukemia. Pathol Res Pract 2019; 215:152494. [PMID: 31229277 DOI: 10.1016/j.prp.2019.152494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/24/2019] [Accepted: 06/08/2019] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) has a relatively improved remission rate, but the poor outcomes are primarily due to resistance and relapse. Moreover, organs infiltration trends to occur during remission. Rapamycin was applied to treat malignancies for decades. In this investigation, we aimed to explore the molecular mechanisms and pathway changes during the T-ALL therapeutic process. T-ALL cell line Molt-4 cells were treated with rapamycin and performed microarray analysis to identify the deregulated miRNAs and mRNAs (log2 fold change>2 or <-2). To obtain regulatory miRNA/mRNA network, miRNA target prediction softwares and Cytoscape were used to plot and modularize the rapamycin treatment-related network. Surprisingly, the enriched pathways were not involved in mediating either cell death or apoptosis but were responsible for angiogenesis, cell survival, and anti-apoptosis, which is consistent with the Gene Ontology analysis and PPI network based on all deregulated mRNAs, indicating that these elements likely play a role in promoting Molt-4 cell survival or escaping from rapamycin. The expression of 3 miRNAs (miR-149-3p, miR-361-3p, and miR-944) and their putative targets, which play central roles in their module, were validated by qRT-PCR. These results provide novel insight into potentially relevant biological pathways for T-ALL cells escaping from chemotherapy or developing central nervous system infiltration.
Collapse
|
27
|
Park S, Kim J, Eom K, Oh S, Kim S, Kim G, Ahn S, Park KH, Chung D, Lee H. microRNA-944 overexpression is a biomarker for poor prognosis of advanced cervical cancer. BMC Cancer 2019; 19:419. [PMID: 31060525 PMCID: PMC6501303 DOI: 10.1186/s12885-019-5620-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background One-third of cervical cancer patients are still diagnosed at advanced stages. The five-year survival rate is decreased in about 50% of advanced stage cervical cancer patients worldwide, and the clinical outcomes are remarkably varied and difficult to predict. One of the miRNAs known to be associated with cancer tumorigenesis is miR-944. However, the prognostic value of miR-944 in cervical cancer has not been fully investigated. The aim of this study was to analyze clinical significance and prognostic value of miR-944 in cervical cancer. Methods The expression levels of miR-944 were detected using quantitative reverse transcription polymerase chain reaction in five types of cervical cancer cell lines and 116 formalin-fixed paraffin-embedded (FFPE) cervical tissues. The association between the expression levels of miR-944 and prognostic value was analyzed using the Kaplan-Meier analysis and Cox proportional hazards model. Results The expression levels of miR-944 in cervical cancer tissues were significantly higher compared with those in normal tissues (P < 0.0001). Moreover, the expression levels of miR-944 in cervical cancer cell lines and FFPE tissues with human papillomavirus (HPV) infection were significantly higher compared to those without HPV infection (P < 0.01 and P = 0.02). High miR-944 expression was also markedly associated with bulky tumor size (P = 0.026), advanced International Federation of Gynecology and Obstetrics (FIGO) stage (P = 0.042), and lymph node metastasis (P = 0.030). In particular, high miR-944 expression group showed shorter overall survival than the low miR-944 expression group in the advanced FIGO stage (84.4% vs. 44.4%, HR = 4.0, and P = 0.01). Conclusions These results suggest that miR-944 may be used as a novel biomarker for improving prognosis and as a potential therapeutic target. Electronic supplementary material The online version of this article (10.1186/s12885-019-5620-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sunyoung Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Jungho Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Kiyoon Eom
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Sehee Oh
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Sunghyun Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Pusan, South Korea
| | - Geehyuk Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Sungwoo Ahn
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea
| | - Kwang Hwa Park
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, South Korea
| | - Dawn Chung
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, 146-92 Dongok-dong, Gangnam-gu, Seoul, Republic of Korea.
| | - Hyeyoung Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 26493, Republic of Korea.
| |
Collapse
|
28
|
Tang J, Zhao J, Sheng W, Zhou J, Dong Q, Dong M. Ectopic expression of miR-944 impairs colorectal cancer cell proliferation and invasion by targeting GATA binding protein 6. J Cell Mol Med 2019; 23:3483-3494. [PMID: 30873717 PMCID: PMC6484418 DOI: 10.1111/jcmm.14245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 12/24/2022] Open
Abstract
miR-944 is a microRNA that has been reported to play different important roles in the progression of cancer. Colorectal cancer (CRC) is a common cancer worldwide. A recent study has confirmed that miR-944 plays a tumour suppressive role in CRC. However, biological functions and the mechanism of miR-944 in CRC are poorly understood. Real-time reverse transcription polymerase chain reaction of 100 CRC tissues showed that miR-944 expression is frequently downregulated and is negatively associated with the T is the primary tumor, N is the lymph node, and M is the distant metastasis (TNM) stage (P = 0.009), depth of invasion (P = 0.001), and lymph node status (P = 0.002). Overexpression of mir-944 significantly impaired the functions of proliferation, migration and invasion in CRC cells, while these functions increased in knockdown experiments. GATA binding protein 6 (GATA6) knockdown can reverse the CRC cells functions induced by miR-944 inhibitor. Mechanistically, a Dual-Luciferase Reporter Assay showed that miR-944 is structurally combined with GATA6 and interacts with downstream proteins (CRT and p-AKT) in CRC cells. In conclusion, these findings indicated that miR-944 may be a tumour suppressor and could likely be used as a prognostic predictor and novel therapeutic target for CRC.
Collapse
Affiliation(s)
- Jing‐Tong Tang
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall SurgeryThe First Hospital, China Medical UniversityShenyangLiaoningChina
| | - Jinbo Zhao
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall SurgeryThe First Hospital, China Medical UniversityShenyangLiaoningChina
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall SurgeryThe First Hospital, China Medical UniversityShenyangLiaoningChina
| | - Jian‐Ping Zhou
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall SurgeryThe First Hospital, China Medical UniversityShenyangLiaoningChina
| | - Qi Dong
- Department of General SurgeryThe People's Hospital of China Medical UniversityShenyangChina
| | - Ming Dong
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall SurgeryThe First Hospital, China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
29
|
Radhakrishnan H, Walther W, Zincke F, Kobelt D, Imbastari F, Erdem M, Kortüm B, Dahlmann M, Stein U. MACC1-the first decade of a key metastasis molecule from gene discovery to clinical translation. Cancer Metastasis Rev 2019; 37:805-820. [PMID: 30607625 DOI: 10.1007/s10555-018-9771-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Deciphering the paths to metastasis and identifying key molecules driving this process is one important issue for understanding and treatment of cancer. Such a key driver molecule is Metastasis Associated in Colon Cancer 1 (MACC1). A decade long research on this evolutionarily conserved molecule with features of a transcription factor as well as an adapter protein for versatile protein-protein interactions has shown that it has manifold properties driving tumors to their metastatic stage. MACC1 transcriptionally regulates genes involved in epithelial-mesenchymal transition (EMT), including those which are able to directly induce metastasis like c-MET, impacts tumor cell migration and invasion, and induces metastasis in solid cancers. MACC1 has proven as a valuable biomarker for prognosis of metastasis formation linked to patient survival and gives promise to also act as a predictive marker for individualized therapies in a broad variety of cancers. This review discusses the many features of MACC1 in the context of the hallmarks of cancer and the potential of this molecule as biomarker and novel therapeutic target for restriction and prevention of metastasis.
Collapse
Affiliation(s)
- Harikrishnan Radhakrishnan
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Fabian Zincke
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Francesca Imbastari
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Müge Erdem
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Benedikt Kortüm
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Mathias Dahlmann
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
30
|
Lv L, Wang X, Ma T. microRNA-944 inhibits the malignancy of hepatocellular carcinoma by directly targeting IGF-1R and deactivating the PI3K/Akt signaling pathway. Cancer Manag Res 2019; 11:2531-2543. [PMID: 31114322 PMCID: PMC6497845 DOI: 10.2147/cmar.s199818] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose: Recent studies have identified microRNA-944 (miR-944) as a cancer-related miRNA, but its expression and precise functions in hepatocellular carcinoma (HCC) remain unknown. Patients and methods: miR-944 expression in HCC tissues and cell lines were detected by RT-qPCR. A series of functional assays were utilized to examine the influence of miR-944 on the malignant phenotypes of HCC cells in vitro and in vivo. More importantly, the associated mechanisms underlying the activity of miR-944 in HCC cells were investigated using bioinformatics, luciferase reporter assays, RT-qPCR, and western blot analysis. Results: In this study, we report for the first time, a significant downregulation of miR-944 in HCC tissues and cell lines and the correlation between its downregulation and malignant clinical parameters, including Edmondson-Steiner grade, TNM stage, and venous infiltration. Low miR-944 expression predicted poorer overall survival rate and disease-free survival rate in patients with HCC. Functionally, exogenous miR-944 expression attenuated cell proliferation, clone formation, metastasis, and epithelial-mesenchymal transition and increased apoptosis in HCC, whereas miR-944 knockdown produced the opposite results. In addition, ectopic miR-944 expression hindered HCC tumor growth in vivo. Mechanistically, insulin-like growth factor 1 receptor (IGF-1R) was demonstrated to be the direct target gene of miR-944 in HCC cells. Furthermore, the expression level of miR-944 was inversely correlated with IGF-1R expression in HCC tissues. Rescue experiments showed that IGF-1R was at least partially responsible for the effects of miR-944 on the malignant phenotypes of HCC cells. In addition, the PI3K/Akt pathway was notably deactivated, both in vitro and in vivo, upon miR-944 upregulation. Conclusion: This study provides the first evidence that miR-944 directly targets IGF-1R and inhibits the aggressiveness of HCC, in vitro and in vivo, by decreasing PI3K/Akt signaling. Hence, targeting miR-944 may open a new avenue for the treatment of patients with HCC.
Collapse
Affiliation(s)
- Lili Lv
- Department of Oncology and Hematology, The Second Hospital of Jilin University, Changchun, Jilin 130000, People's Republic of China
| | - Xiaodong Wang
- Department of Digestive Endoscopy, The Second Hospital of Jilin University, Changchun, Jilin 130000, People's Republic of China
| | - Tonghui Ma
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130000, People's Republic of China
| |
Collapse
|
31
|
An JC, Shi HB, Hao WB, Zhu K, Ma B. miR-944 inhibits lung adenocarcinoma tumorigenesis by targeting STAT1 interaction. Oncol Lett 2019; 17:3790-3798. [PMID: 30881499 PMCID: PMC6403514 DOI: 10.3892/ol.2019.10045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022] Open
Abstract
Lung adenocarcinoma (LAC) is a leading cause of cancer-associated mortalities, particularly in developed countries. The aberrant expression of microRNAs (miRNAs) has been proven to regulate numerous diseases in the past two decades. miRNAs have been identified in almost all human cancer types. In the present study, the role of miR-944 in LAC proliferation was examined. It was identified that miR-944 was downregulated in LAC tissues and cells, and miR-944 overexpression inhibited A549 and H1299 cell proliferation, as determined by the Cell Counting Kit-8 and colony formation assay. Signal transducer and activator of transcription 1 (STAT1) was upregulated in LAC tissues and cells. Kaplan-Meier analysis demonstrated that the 5-year overall survival in patients with high STAT1 levels was significantly reduced, compared with patients with negative and low STAT1 expression. STAT1 was the direct target of miR-944. Additionally, a miR-944 mimic inhibited A549 cell growth in vitro. Collectively, these data demonstrate that miR-944 serves a pivotal role in LAC tumor growth by targeting STAT1. The data obtained indicated that miR-944 may be a novel biomarker and could result in potential therapies for LAC.
Collapse
Affiliation(s)
- Jing Chun An
- Department of Respiratory Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Han-Bing Shi
- Department of Respiratory Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Wen-Bo Hao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Kun Zhu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Bo Ma
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
32
|
Shu F, Zou X, Tuo H, She S, Huang J, Ren H, Hu H, Peng S, Wang J, Yang Y. Stathmin gene silencing suppresses proliferation, migration and invasion of gastric cancer cells via AKT/sCLU and STAT3 signaling. Int J Oncol 2019; 54:1086-1098. [PMID: 30628664 DOI: 10.3892/ijo.2019.4674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/02/2018] [Indexed: 11/06/2022] Open
Abstract
Globally, gastric cancer is the fifth most common malignancy, with high rates of incidence and mortality. The high mortality rate and poor prognosis of gastric cancer are closely associated with its profound invasiveness, high incidence of metastasis, rapid proliferation, and high rate of recurrence. Previous studies have confirmed that stathmin (STMN) has an important role in the occurrence, development and prognosis of gastric cancer. However, the detailed mechanisms by which STMN affects these processes remain unclear. The aim of the present study was to determine how STMN promotes invasion, migration and proliferation in gastric cancer tumor cells. The results of immunohistochemistry indicated that STMN is overexpressed in stomach neoplasm tissues, and that it is associated with migration, invasion, proliferation and anti‑apoptotic states of gastric cancer cells. The secretory proteins of gastric cancer cells with or without STMN knockdown were further analyzed using the isobaric tags for relative and absolute quantitation method to identify differentially expressed proteins verified by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. Inhibition of STMN decreases the levels of clusterin, cystatin C and matrix metalloproteinases, followed by inhibiting the protein kinase B and signal transducer and activation of transcription activation. These findings suggest that STMN could be a promising therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Feng Shu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaoqin Zou
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Huan Tuo
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Sha She
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Juan Huang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hong Ren
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Huaidong Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shifang Peng
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jiandong Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yixuan Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
33
|
Kim YJ, Lee JH, Jin S, Kim JH, Kim SH. Primate-specific miR-944 activates p53-dependent tumor suppression in human colorectal cancers. Cancer Lett 2018; 440-441:168-179. [PMID: 30393117 DOI: 10.1016/j.canlet.2018.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/04/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023]
Abstract
As cancers with a high incidence rate, colorectal cancers are a main cause of cancer-related death. MicroRNAs are often deregulated in cancers. The primate-specific miR-944, located in a p63 intron, is known to be highly expressed in patients exhibiting low colorectal cancer recurrence rates. However, the biological functions of miR-944 in colorectal cancers remain unclear. In this study, we found that miR-944 was downregulated in colorectal cancer tissues, and inhibited cancer cell growth in a xenograft mouse model. The overexpression of miR-944 caused G1 phase arrest and increased p53 expression in cancer cells. p53 stability was enhanced by miR-944s targeting E3 ligases COP1 and MDM2. Overexpression of COP1 and MDM2 restored cell growth inhibition caused by miR-944. Taken together, our results suggest that miR-944 acts as a potential tumor suppressor in colorectal cancers through the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Yoon-Jin Kim
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jeong Hwa Lee
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soll Jin
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sang Hoon Kim
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
34
|
Yan T, Zhu S, Zhang J, Lu G, Lv C, Wei Y, Luo M. MicroRNA‑944 targets vascular endothelial growth factor to inhibit cell proliferation and invasion in osteosarcoma. Mol Med Rep 2018; 18:5221-5228. [PMID: 30280196 DOI: 10.3892/mmr.2018.9524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/12/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Tingzhen Yan
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Shiyong Zhu
- Department of Spine Surgery, Lanling County People's Hospital of Shandong Province, Linyi, Shandong 277700, P.R. China
| | - Jing Zhang
- Department of Pathology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Gongbiao Lu
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Chaoliang Lv
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yanchun Wei
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Minghua Luo
- Department of Orthopedics, The Second People's Hospital of Jingdezhen, Jingdezhen, Jiangxi 333000, P.R. China
| |
Collapse
|
35
|
eNOS expression and NO release during hypoxia is inhibited by miR-200b in human endothelial cells. Angiogenesis 2018; 21:711-724. [PMID: 29737439 PMCID: PMC6208887 DOI: 10.1007/s10456-018-9620-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The nitric oxide (NO) secreted by vascular endothelium is required for the maintenance of cardiovascular homeostasis. Diminished release of NO generated by endothelial NO synthase contributes to endothelial dysfunction. Hypoxia and ischemia reduce endothelial eNOS expression via posttranscriptional mechanisms that result in NOS3 transcript destabilization. Here, we examine whether microRNAs contribute to this mechanism. We followed the kinetics of hypoxia-induced changes in NOS3 mRNA and eNOS protein levels in primary human umbilical vein endothelial cells (HUVECs). Utilizing in silico predictive protocols to identify potential miRNAs that regulate eNOS expression, we identified miR-200b as a candidate. We established the functional miR-200b target sequence within the NOS3 3′UTR, and demonstrated that manipulation of the miRNA levels during hypoxia using miR-200b mimics and antagomirs regulates eNOS levels, and established that miR-200b physiologically limits eNOS expression during hypoxia. Furthermore, we demonstrated that the specific ablation of the hypoxic induction of miR-200b in HUVECs restored eNOS-driven hypoxic NO release to the normoxic levels. To determine whether miR-200b might be the only miRNA that had this effect, we utilized Next Generation Sequencing (NGS) to follow hypoxia-induced changes in the miRNA levels in HUVECS and found 83 novel hypoxamiRs, with two candidate miRNAs besides miR-200b that could potentially influence eNOS levels. Taken together, the data establish miR-200b-eNOS regulation as a first hypoxamiR-based mechanism that limits NO bioavailability during hypoxia in endothelial cells, and show that hypoxamiRs could become useful therapeutic targets for cardiovascular diseases and other hypoxic-related diseases including various types of cancer.
Collapse
|
36
|
MicroRNA-485-5p suppresses growth and metastasis in non-small cell lung cancer cells by targeting IGF2BP2. Life Sci 2018; 199:104-111. [DOI: 10.1016/j.lfs.2018.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/15/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
|
37
|
Ji J, Peng Y, Niu T, Lin Y, Lin Y, Li X, Wu X, Huang Z, Zhong L, Zhang S. miR-944 inhibits cell migration and invasion by targeting MACC1 in nasopharyngeal carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1167-1174. [PMID: 31938211 PMCID: PMC6958143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 06/10/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a common disease in Southern China with high prevalence. miR-944 has been reported to play a vital role in progression of a variety of cancers. The present study aimed to investigate the potential role of miR-944 in NPC cell migration and invasion through elucidating the interaction with its target genes, MACC1. Expression of miR-944 in NPC tissues and cell lines was examined with quantitative RT-PCR. Overexpressed miR-944 and suppressed miR-944 were established with miR-944 mimics and miR-944 inhibitor, respectively. The effect of miR-944 on cell migration and invasion was determined using Transwell cell migration and Matrigel invasion assay. Luciferase assay was used to determine the target of miR-944. Knocked down of MACC1 was done by MACC1 siRNA. Expression of MET related-markers was examined using Western blot analysis. The expression level of miR-944 was downregulated in NPC tissues and cell lines. Overexpression of miR-944 significantly inhibited the cell migration and invasion in NPC 6-10B cells. In contrast, suppression of miR-944 promoted cell migration and invasion in NPC C-6661 cells. MACC1 is a direct target of miR-944. MACC1 expression was repressed in miR-944 mimic transfected cells while it was enhanced in miR-944 inhibitor transfected cells. MACC1 knock down inhibited cell migration and invasion. Either miR-944 restoration or MACC1 knockdown caused enhanced E-cadherin, reduced N-cadherin, and vimentin expression. In conclusion, miR-944 could inhibit MET and metastasis of NPC by targeting MACC1. This study suggests that miR-944 has anti-tumor and anti- metastatic properties and could thus be a novel therapeutic agent for NPC treatment.
Collapse
Affiliation(s)
- Juanjuan Ji
- The Second People’s Hospital of Yunnan ProvinceKunming, China
| | - Yi Peng
- The Affiliated Stomatology Hospital of Kunming Medical UniversityKunming 650500, Yunnan Province, China
| | - Tao Niu
- The Affiliated Stomatology Hospital of Kunming Medical UniversityKunming 650500, Yunnan Province, China
| | - Yunhong Lin
- The Affiliated Stomatology Hospital of Kunming Medical UniversityKunming 650500, Yunnan Province, China
| | - Yan Lin
- The First Affiliated Hospital of Kunming Medical UniversityKunming, China
| | - Xudong Li
- The Affiliated Stomatology Hospital of Kunming Medical UniversityKunming 650500, Yunnan Province, China
| | - Xiaoguang Wu
- The First Affiliated Hospital of Kunming Medical UniversityKunming, China
| | - Zhiyong Huang
- The Affiliated Stomatology Hospital of Kunming Medical UniversityKunming 650500, Yunnan Province, China
| | - Ling Zhong
- The First Affiliated Hospital of Kunming Medical UniversityKunming, China
| | - Shinan Zhang
- The Affiliated Stomatology Hospital of Kunming Medical UniversityKunming 650500, Yunnan Province, China
| |
Collapse
|
38
|
Wang N, Zhang Y, Liang H. MicroRNA-598 Inhibits Cell Proliferation and Invasion of Glioblastoma by Directly Targeting Metastasis Associated in Colon Cancer-1 (MACC1). Oncol Res 2018; 26:1275-1283. [PMID: 29444745 PMCID: PMC7844726 DOI: 10.3727/096504018x15185735627746] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The dysregulation of microRNA (miRNA) expression is closely related with tumorigenesis and tumor development in glioblastoma (GBM). In this study, we found that miRNA-598 (miR-598) expression was significantly downregulated in GBM tissues and cell lines. Restoring miR-598 expression inhibited cell proliferation and invasion in GBM. Moreover, we validated that metastasis associated in colon cancer-1 (MACC1) is a novel target of miR-598 in GBM. Restoring MACC1 expression reversed the inhibitory effects of miR-598 overexpression on GBM cells. In addition, miR-598 overexpression suppressed Met/AKT pathway activation in GBM. Our results provided compelling evidence that miR-598 serves tumor-suppressive roles in GBM and that its antioncogenic effects are mediated chiefly through the direct suppression of MACC1 expression and regulation of the Met/AKT signaling pathway. Therefore, miR-598 is a potential target in the treatment of GBM.
Collapse
Affiliation(s)
- Ning Wang
- Department of Neurosurgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Hubei, P.R. China
| | - Yang Zhang
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Hubei, P.R. China
| | - Huaxin Liang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Jilin, P.R. China
| |
Collapse
|
39
|
Wu H, Wang X, Mo N, Zhang L, Yuan X, Lü Z. B7-Homolog 4 Promotes Epithelial-Mesenchymal Transition and Invasion of Bladder Cancer Cells via Activation of Nuclear Factor-κB. Oncol Res 2018; 26:1267-1274. [PMID: 29391086 PMCID: PMC7844705 DOI: 10.3727/096504018x15172227703244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
B7-homolog 4 (B7-H4), a member of the B7 family of costimulatory molecules, has been reported to be upregulated in urothelial cell carcinoma. This study was conducted to explore the biological role of B7-H4 in the aggressiveness of bladder cancer and the associated molecular mechanism. We found that the mRNA and protein levels of B7-H4 were significantly greater in bladder cancer cell lines than in SV-HUC-1 (normal human urothelial cells). Overexpression of B7-H4 significantly promoted bladder cancer cell migration and invasion, whereas knockdown of B7-H4 exerted an opposite effect. However, the growth of bladder cancer cells was not altered by B7-H4 overexpression or knockdown. Overexpression of B7-H4 promoted epithelial–mesenchymal transition (EMT), as evidenced by decreased E-cadherin and increased vimentin expression. The EMT inducers Twist1 and Snail were upregulated by B7-H4 overexpression and downregulated by B7-H4 silencing. Mechanistically, overexpression of B7-H4 induced the activation of NF-κB signaling. Pharmacological inhibition of NF-κB partially prevented B7-H4-mediated bladder cancer cell invasion. Taken together, B7-H4/NF-κB signaling is involved in the EMT and invasion of bladder cancer cells and represents a new candidate target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Haoran Wu
- Department of Urology, Wujin Hospital, Affiliated to Jiangsu University, Changzhou, P.R. China
| | - Xugang Wang
- Department of Urology, Wujin Hospital, Affiliated to Jiangsu University, Changzhou, P.R. China
| | - Naixin Mo
- Department of Urology, Wujin Hospital, Affiliated to Jiangsu University, Changzhou, P.R. China
| | - Liang Zhang
- Department of Urology, Wujin Hospital, Affiliated to Jiangsu University, Changzhou, P.R. China
| | - Xiaoliang Yuan
- Department of Urology, Wujin Hospital, Affiliated to Jiangsu University, Changzhou, P.R. China
| | - Zhong Lü
- Department of Urology, Wujin Hospital, Affiliated to Jiangsu University, Changzhou, P.R. China
| |
Collapse
|
40
|
Bai X, Zhou Y, Chen P, Yang M, Xu J. MicroRNA-142-5p induces cancer stem cell-like properties of cutaneous squamous cell carcinoma via inhibiting PTEN. J Cell Biochem 2017; 119:2179-2188. [PMID: 28857248 DOI: 10.1002/jcb.26379] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a malignancy of keratinocyte-derived skin tumor, which is regarded as the second most common skin cancer worldwide. Accumulating evidence has established that microRNAs (miRNAs) can play a critical role in tumor initiation, progression, and metastasis including cSCC. Abnormal expression of hsa-miR-142-5p has been elaborated in various tumors. Nevertheless, its expression and function in the development of cSCC remain unclear. In our study, we found that the expression of hsa-miR-142-5p in cSCC cells were greatly overexpressed compared to human benign epidermal keratinocyte cells. Moreover, inhibited hsa-miR-142-5p can repress cSCC cell growth and induce apoptosis while upregulated hsa-miR-142-5p exhibited a reverse phenomenon. Recently, cancer stem cells (CSCs) which possess the ability of self-renewal and proliferation and are able to produce cancer cells have been widely reported. However, the correlation between hsa-miR-142-5p and CSCs in cSCC is still unknown. Interestingly, we observed that overexpressing hsa-miR-142-5p can induce CSC-like properties in cSCC via activating Wnt signaling. In addition, the luciferase reporter assay data and bioinformatics analysis demonstrated that hsa-miR-142-5p can target the 3'UTR of PTEN mRNA. Taken these together, we draw a conclusion that hsa-miR-142-5p can trigger cancer stem cell-like properties of cSCC through inhibition of PTEN. Our findings may provide hsa-miR-142-5p as a new therapeutic target for cSCC.
Collapse
Affiliation(s)
- Xinping Bai
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhou
- Department of Dermatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Chen
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yang
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Xu
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|