1
|
Malak M, Qian C, James J, Nair S, Grantham J, Ericson MB. Insights into metabolic changes during epidermal differentiation as revealed by multiphoton microscopy with fluorescence lifetime imaging. Sci Rep 2025; 15:6377. [PMID: 39984626 PMCID: PMC11845624 DOI: 10.1038/s41598-025-90101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
Rapid developments in the field of organotypic cultures have generated a growing need for effective and non-invasive methods for quality control during tissue development. In this study, we correlate metabolic changes with epidermal differentiation and demonstrate that multiphoton microscopy with fluorescence lifetime imaging (MPM-FLIM) can be applied to monitor epidermal differentiation of keratinocytes with respect to proliferative and differentiated states. In a 2D keratinocyte tissue culture model, increased expression of differentiation markers keratin-1 and keratin-10 was induced with calcium supplementation. An accompanying shift from glycolysis to mitochondrial respiration was detected in metabolic flux assays. Analysis of MPM-FLIM images acquired at 750 nm and 900 nm excitation revealed a decreased relative fraction of intracellular NADH and FAD after high calcium treatment, consistent with increased oxidative phosphorylation. Epidermal differentiation could be monitored over a 96 h period. Discrimination analysis based on k-means clustering generated clusters that correlated well with the duration of high Ca2+ treatment, suggesting that MPM-FLIM can provide useful parameters for monitoring keratinocyte differentiation.
Collapse
Affiliation(s)
- Monika Malak
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, 412 96, Sweden
| | - Chen Qian
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, 412 96, Sweden.
| | - Jeemol James
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, 412 96, Sweden
| | - Syam Nair
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 413 90, Sweden
- Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, 416 85, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, 412 96, Sweden
| | - Marica B Ericson
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, 412 96, Sweden.
| |
Collapse
|
2
|
Peñaherrera S, Ruiz C, Castañeda V, Livingston K, Barba D, Burzio VA, Caicedo A, Singh KK. Exploring the role of mitochondria transfer/transplant and their long-non-coding RNAs in regenerative therapies for skin aging. Mitochondrion 2023; 70:41-53. [PMID: 36921832 PMCID: PMC10400337 DOI: 10.1016/j.mito.2023.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Advancing age and environmental stressors lead to mitochondrial dysfunction in the skin, inducing premature aging, impaired regeneration, and greater risk of cancer. Cells rely on the communication between the mitochondria and the nucleus by tight regulation of long non-coding RNAs (lncRNAs) to avoid premature aging and maintain healthy skin. LncRNAs act as key regulators of cell proliferation, differentiation, survival, and maintenance of skin structure. However, research on how the lncRNAs are dysregulated during aging and due to stressors is needed to develop therapies to regenerate skin's function and structure. In this article, we discuss how age and environmental stressors may alter lncRNA homeodynamics, compromising cell survival and skin health, and how these factors may become inducers of skin aging. We describe skin cell types and how they depend on mitochondrial function and lncRNAs. We also provide a list of mitochondria localized and nuclear lncRNAs that can serve to better understand skin aging. Using bioinformatic prediction tools, we predict possible functions of lncRNAs based on their subcellular localization. We also search for experimentally determined protein interactions and the biological processes involved. Finally, we provide therapeutic strategies based on gene editing and mitochondria transfer/transplant (AMT/T) to restore lncRNA regulation and skin health. This article offers a unique perspective in understanding and defining the therapeutic potential of mitochondria localized lncRNAs (mt-lncRNAs) and AMT/T to treat skin aging and related diseases.
Collapse
Affiliation(s)
- Sebastian Peñaherrera
- Biotecnología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Cristina Ruiz
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica Castañeda
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Kathryn Livingston
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Purdue University, Weldon School of Biomedical Engineering, Indiana, United States
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica A Burzio
- Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Smythe P, Wilkinson HN. The Skin Microbiome: Current Landscape and Future Opportunities. Int J Mol Sci 2023; 24:3950. [PMID: 36835363 PMCID: PMC9963692 DOI: 10.3390/ijms24043950] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Our skin is the largest organ of the body, serving as an important barrier against the harsh extrinsic environment. Alongside preventing desiccation, chemical damage and hypothermia, this barrier protects the body from invading pathogens through a sophisticated innate immune response and co-adapted consortium of commensal microorganisms, collectively termed the microbiota. These microorganisms inhabit distinct biogeographical regions dictated by skin physiology. Thus, it follows that perturbations to normal skin homeostasis, as occurs with ageing, diabetes and skin disease, can cause microbial dysbiosis and increase infection risk. In this review, we discuss emerging concepts in skin microbiome research, highlighting pertinent links between skin ageing, the microbiome and cutaneous repair. Moreover, we address gaps in current knowledge and highlight key areas requiring further exploration. Future advances in this field could revolutionise the way we treat microbial dysbiosis associated with skin ageing and other pathologies.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Holly N. Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| |
Collapse
|
4
|
Khachaturyan G, Holle AW, Ende K, Frey C, Schwederski HA, Eiseler T, Paschke S, Micoulet A, Spatz JP, Kemkemer R. Temperature-sensitive migration dynamics in neutrophil-differentiated HL-60 cells. Sci Rep 2022; 12:7053. [PMID: 35488042 PMCID: PMC9054779 DOI: 10.1038/s41598-022-10858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
Cell migration plays an essential role in wound healing and inflammatory processes inside the human body. Peripheral blood neutrophils, a type of polymorphonuclear leukocyte (PMN), are the first cells to be activated during inflammation and subsequently migrate toward an injured tissue or infection site. This response is dependent on both biochemical signaling and the extracellular environment, one aspect of which includes increased temperature in the tissues surrounding the inflammation site. In our study, we analyzed temperature-dependent neutrophil migration using differentiated HL-60 cells. The migration speed of differentiated HL-60 cells was found to correlate positively with temperature from 30 to 42 °C, with higher temperatures inducing a concomitant increase in cell detachment. The migration persistence time of differentiated HL-60 cells was higher at lower temperatures (30-33 °C), while the migration persistence length stayed constant throughout the temperature range. Coupled with the increased speed observed at high temperatures, this suggests that neutrophils are primed to migrate more effectively at the elevated temperatures characteristic of inflammation. Temperature gradients exist on both cell and tissue scales. Taking this into consideration, we also investigated the ability of differentiated HL-60 cells to sense and react to the presence of temperature gradients, a process known as thermotaxis. Using a two-dimensional temperature gradient chamber with a range of 27-43 °C, we observed a migration bias parallel to the gradient, resulting in both positive and negative thermotaxis. To better mimic the extracellular matrix (ECM) environment in vivo, a three-dimensional collagen temperature gradient chamber was constructed, allowing observation of biased neutrophil-like differentiated HL-60 migration toward the heat source.
Collapse
Affiliation(s)
- Galina Khachaturyan
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, 69120, Heidelberg, Germany
| | - Andrew W Holle
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore, 117411, Singapore, Republic of Singapore
| | - Karen Ende
- School of Applied Chemistry, Reutlingen University, Alteburgstrasse 150, 72762, Reutlingen, Germany
| | - Christoph Frey
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, 69120, Heidelberg, Germany
| | - Heiko A Schwederski
- School of Applied Chemistry, Reutlingen University, Alteburgstrasse 150, 72762, Reutlingen, Germany
| | - Tim Eiseler
- Internal Medicine I, University Clinic Ulm, 89081, Ulm, Germany
| | - Stephan Paschke
- General and Visceral Surgery, University Clinic Ulm, 89081, Ulm, Germany
| | - Alexandre Micoulet
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, 69120, Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, 69120, Heidelberg, Germany
| | - Ralf Kemkemer
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany.
- School of Applied Chemistry, Reutlingen University, Alteburgstrasse 150, 72762, Reutlingen, Germany.
| |
Collapse
|
5
|
Park HJ, Hong H, Thangam R, Song MG, Kim JE, Jo EH, Jang YJ, Choi WH, Lee MY, Kang H, Lee KB. Static and Dynamic Biomaterial Engineering for Cell Modulation. NANOMATERIALS 2022; 12:nano12081377. [PMID: 35458085 PMCID: PMC9028203 DOI: 10.3390/nano12081377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
In the biological microenvironment, cells are surrounded by an extracellular matrix (ECM), with which they dynamically interact during various biological processes. Specifically, the physical and chemical properties of the ECM work cooperatively to influence the behavior and fate of cells directly and indirectly, which invokes various physiological responses in the body. Hence, efficient strategies to modulate cellular responses for a specific purpose have become important for various scientific fields such as biology, pharmacy, and medicine. Among many approaches, the utilization of biomaterials has been studied the most because they can be meticulously engineered to mimic cellular modulatory behavior. For such careful engineering, studies on physical modulation (e.g., ECM topography, stiffness, and wettability) and chemical manipulation (e.g., composition and soluble and surface biosignals) have been actively conducted. At present, the scope of research is being shifted from static (considering only the initial environment and the effects of each element) to biomimetic dynamic (including the concepts of time and gradient) modulation in both physical and chemical manipulations. This review provides an overall perspective on how the static and dynamic biomaterials are actively engineered to modulate targeted cellular responses while highlighting the importance and advance from static modulation to biomimetic dynamic modulation for biomedical applications.
Collapse
Affiliation(s)
- Hyung-Joon Park
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
| | - Hyunsik Hong
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
| | - Ramar Thangam
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Min-Gyo Song
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Ju-Eun Kim
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Eun-Hae Jo
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Yun-Jeong Jang
- Department of Biomedical Engineering, Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Won-Hyoung Choi
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Min-Young Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Heemin Kang
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Correspondence: (H.K.); (K.-B.L.)
| | - Kyu-Back Lee
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
- Correspondence: (H.K.); (K.-B.L.)
| |
Collapse
|
6
|
Suciu M, Porav S, Radu T, Rosu MC, Lazar MD, Macavei S, Socaci C. Photodynamic effect of light emitting diodes on E. coli and human skin cells induced by a graphene-based ternary composite. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112298. [PMID: 34474299 DOI: 10.1016/j.jphotobiol.2021.112298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023]
Abstract
In this paper, the photodynamic effect of a ternary nanocomposite (TiO2-Ag/graphene) on Escherichia coli bacteria and two human cell lines: A375 (melanoma) and HaCaT (keratinocyte) after exposure to different wavelength domains (blue, green or red-Light Emitting Diode, LED) was analyzed. The results obtained through bioassays were correlated with the morphological, structural and spectral data obtained through FT-IR, XPS and UV-Vis spectroscopy, powder X-Ray diffractometry (XRD) and STEM/EDX techniques, leading to conclusions that showed different photodynamic activation mechanisms and effects on bacteria and human cells, depending on the wavelength. The nanocomposite proved a therapeutic potential for blue light-activated antibacterial treatment and revealed a keratinocyte cytotoxic effect under blue and green LEDs. The red light-nanocomposite duo gave a metabolic boost to normal keratinocytes and induced stasis to melanoma cells. The light and nanocomposite combination could be a potential therapy for bacterial keratosis or for skin tumors.
Collapse
Affiliation(s)
- Maria Suciu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania; Biology and Geology Faculty, Babes-Bolyai University, 5-7 Clinicilor Str, Cluj-Napoca, Romania
| | - Sebastian Porav
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Teodora Radu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Marcela C Rosu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Mihaela D Lazar
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Sergiu Macavei
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Crina Socaci
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania.
| |
Collapse
|
7
|
Meduri A, Bergandi L, Oliverio GW, Rechichi M, Acri G, Perroni P, Silvagno F, Aragona P. The cold eye irrigation BSS solution used during phacoemulsification reduces post-surgery patients discomfort preventing the inflammation. Eur J Ophthalmol 2021; 32:11206721211018377. [PMID: 34011203 DOI: 10.1177/11206721211018377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study was to assess whether the intraoperative use of the cold eye irrigation balanced salt solution (BSS) could have a protective effect in preventing the anterior chamber flare and conjunctival hyperemia and, thus, in reducing patients discomfort after phacoemulsification. MATERIALS AND METHODS About 214 patients were enrolled and randomly divided into: patients whose eye were irrigated with BSS at ~ 20°C (Group 1) and patients whose eye were irrigated with BSS at 2.7°C (Group 2). Anterior chamber flare, visual analogue score and conjunctival hyperemia were evaluated at 1, 3, 5, and 30 days after surgery. RESULTS In patients of Group 2 the anterior chamber flare, the visual analogue score and the conjunctival hyperemia, used as parameters to evaluated clinical inflammation, at 1 day after surgery were significantly lower than those in Group 1 who received BSS solution at operating room temperature (p < 0.001), while at day 3, 5, and 30 there were not any significant differences. CONCLUSION Our study provided evidence supporting the efficacy of the treatment with cold irrigation solution on reduction of anterior chamber flare, pain and conjunctival hyperemia already at 1 day after phacoemulsification, suggesting that cooling procedure was fully effective at controlling early post-operative inflammation.
Collapse
Affiliation(s)
- Alessandro Meduri
- Biomedical, Dental and Morphological and Functional Images Sciences Department, University of Messina, Messina, Italy
| | | | - Giovanni William Oliverio
- Biomedical, Dental and Morphological and Functional Images Sciences Department, University of Messina, Messina, Italy
| | - Miguel Rechichi
- Centro Polispecialistico Mediterraneo, Sellia Marina, Catanzaro, Italy
| | - Giuseppe Acri
- Biomedical, Dental and Morphological and Functional Images Sciences Department, University of Messina, Messina, Italy
| | - Pietro Perroni
- Department of Ophthalmology, Oftalmico Hospital, ASST-Fatebenefratelli-Sacco, Milano, Italy
| | | | - Pasquale Aragona
- Biomedical, Dental and Morphological and Functional Images Sciences Department, University of Messina, Messina, Italy
| |
Collapse
|
8
|
Frese L, Darwiche SE, von Rechenberg B, Hoerstrup SP, Giovanoli P, Calcagni M. Thermal conditioning improves quality and speed of keratinocyte sheet production for burn wound treatment. Cytotherapy 2021; 23:536-547. [PMID: 33685808 DOI: 10.1016/j.jcyt.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/06/2021] [Accepted: 01/20/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND AIMS Cultured patient-specific keratinocyte sheets have been used clinically since the 1970s for the treatment of large severe burns. However, despite significant developments in recent years, successful and sustainable treatment is still a challenge. Reliable, high-quality grafts with faster availability and a flexible time window for transplantation are required to improve clinical outcomes. METHODS Keratinocytes are usually grown in vitro at 37°C. Given the large temperature differences in native skin tissue, the aim of the authors' study was to investigate thermal conditioning of keratinocyte sheet production. Therefore, the influence of 31°C, 33°C and 37°C on cell expansion and differentiation in terms of proliferation and sheet formation efficacy was investigated. In addition, the thermal effect on the biological status and thus the quality of the graft was assessed on the basis of the release of wound healing-related biofactors in various stages of graft development. RESULTS The authors demonstrated that temperature is a decisive factor in the production of human keratinocyte sheets. By using specific temperature ranges, the authors have succeeded in optimizing the individual manufacturing steps. During the cell expansion phase, cultivation at 37°C was most effective. After 6 days of culture at 37°C, three times and six times higher numbers of viable cells were obtained compared with 33°C and 31°C. During the cell differentiation and sheet formation phase, however, the cells benefited from a mildly hypothermic temperature of 33°C. Keratinocytes showed increased differentiation potential and formed better epidermal structures, which led to faster biomechanical sheet stability at day 18. In addition, a cultivation temperature of 33°C resulted in a longer lasting and higher secretion of the investigated immunomodulatory, anti-inflammatory, angiogenic and pro-inflammatory biofactors. CONCLUSIONS These results show that by using specific temperature ranges, it is possible to accelerate the large-scale production of cultivated keratinocyte sheets while at the same time improving quality. Cultivated keratinocyte sheets are available as early as 18 days post-biopsy and at any time for 7 days thereafter, which increases the flexibility of the process for surgeons and patients alike. These findings will help to provide better clinical outcomes, with an increased take rate in severe burn patients.
Collapse
Affiliation(s)
- Laura Frese
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine, Zurich, Switzerland; La Colline Research Fellow, La Colline, Sion, Switzerland.
| | - Salim E Darwiche
- Center for Applied Biotechnology and Molecular Medicine, Zurich, Switzerland; Musculoskeletal Research Unit, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Brigitte von Rechenberg
- Center for Applied Biotechnology and Molecular Medicine, Zurich, Switzerland; Musculoskeletal Research Unit, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine, Zurich, Switzerland
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Maurizio Calcagni
- Center for Applied Biotechnology and Molecular Medicine, Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Müller WEG, Schepler H, Tolba E, Wang S, Ackermann M, Muñoz-Espí R, Xiao S, Tan R, She Z, Neufurth M, Schröder HC, Wang X. A physiologically active interpenetrating collagen network that supports growth and migration of epidermal keratinocytes: zinc-polyP nanoparticles integrated into compressed collagen. J Mater Chem B 2020; 8:5892-5902. [DOI: 10.1039/d0tb01240h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is demonstrated that polyphosphate, as a component in wound healing mats together with Zn2+, is essential for growth and migration of skin keratinocytes.
Collapse
|
10
|
Song Y, Wang B, Li H, Hu X, Lin X, Hu X, Zhang Y. Low temperature culture enhances ameloblastic differentiation of human keratinocyte stem cells. J Mol Histol 2019; 50:417-425. [PMID: 31278616 DOI: 10.1007/s10735-019-09837-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
Abstract
Previous studies have demonstrated that several types of human stem cells of non-dental origin can be induced to differentiate into enamel-secreting ameloblasts after recombined with mouse embryonic dental mesenchyme. However, the successful rate of ameloblastic differentiation is about rather low, which presents a major obstacle for future stem cell-based whole tooth bioengineering. Previous studies have shown that cultures at reduced temperature could improve the differentiation capability of stem cells in tissue engineering. In this study, we systematically investigated the effects of low temperature on the viability, proliferation and stemness of human keratinocytes stem cells (hKSCs) in cell culture and further examined ameloblastic differentiation of the hKSCs in human-mouse recombinant chimeric tooth germs. Our results demonstrated that low temperature indeed reduces growth rate and maintains healthy undifferentiated morphology of hKSCs without any effects on cell viability. Moreover, examination of stemness makers revealed improved stemness of hKSCs cultured at low temperature with increased expression of stemness markers K15, CD29 and p63 and decreased expression differentiation marker K10, as compared to those cultured at 37 °C. These low temperature treated hKSCs, when recombined with mouse embryonic dental mesenchyme, exhibited significantly increased rate (40%) of ameloblastic differentiation, as compared to that (17%) in tissue recombinants with those hKSCs treated at standard temperature. Our studies demonstrate that low temperature cell culture improves the stemness and plasticity of hKSCs, which in turn enhances ameloblastic differentiation capability of the stem cells in bioengineered teeth.
Collapse
Affiliation(s)
- Yingnan Song
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350108, Fujian, People's Republic of China
| | - Bingmei Wang
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350108, Fujian, People's Republic of China
| | - Hua Li
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350108, Fujian, People's Republic of China
| | - Xiaoxiao Hu
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350108, Fujian, People's Republic of China
| | - Xin Lin
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350108, Fujian, People's Republic of China
| | - Xuefeng Hu
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350108, Fujian, People's Republic of China
| | - Yanding Zhang
- Southern Center for Biomedical Research, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350108, Fujian, People's Republic of China.
| |
Collapse
|
11
|
A hierarchical integration pyramid to increase translation of biomaterials based on recent successes in multiscale synthetic biomaterials research. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Mieremet A, van Dijk R, Boiten W, Gooris G, Bouwstra JA, El Ghalbzouri A. Characterization of human skin equivalents developed at body's core and surface temperatures. J Tissue Eng Regen Med 2019; 13:1122-1133. [PMID: 30945465 PMCID: PMC6767576 DOI: 10.1002/term.2858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/19/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022]
Abstract
Human skin equivalents (HSEs) are in vitro developed three‐dimensional models resembling native human skin (NHS) to a high extent. However, the epidermal lipid biosynthesis, barrier lipid composition, and organization are altered, leading to an elevated diffusion rate of therapeutic molecules. The altered lipid barrier formation in HSEs may be induced by standardized culture conditions, including a culture temperature of 37°C, which is dissimilar to skin surface temperature. Therefore, we aim to determine the influence of culture temperature during the generation of full thickness models (FTMs) on epidermal morphogenesis and lipid barrier formation. For this purpose, FTMs were developed at conventional core temperature (37°C) or lower temperatures (35°C and 33°C) and evaluated over a time period of 4 weeks. The stratum corneum (SC) lipid composition was analysed using advanced liquid chromatography coupled to mass spectrometry analysis. Our results show that SC layers accumulated at a similar rate irrespective of culture temperature. At reduced culture temperature, an increased epidermal thickness, a disorganization of the lower epidermal cell layers, a delayed early differentiation, and an enlargement of granular cells were detected. Interestingly, melanogenesis was reduced at lower temperature. The ceramide subclass profile, chain length distribution, and level of unsaturated ceramides were similar in FTMs generated at 37°C and 35°C but changed when generated at 33°C, reducing the resemblance to NHS. Herein, we report that culture temperature affects epidermal morphogenesis substantially and to a lesser extent the lipid barrier formation, highlighting the importance of optimized external parameters during reconstruction of skin.
Collapse
Affiliation(s)
- Arnout Mieremet
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Rianne van Dijk
- Research division BioTherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Walter Boiten
- Research division BioTherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Gert Gooris
- Research division BioTherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Joke A Bouwstra
- Research division BioTherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|