Tangthavewattana S, Leelawatwattana L, Prapunpoj P. The hydrophobic C-terminal sequence of transthyretin affects its catalytic kinetics towards amidated neuropeptide Y.
FEBS Open Bio 2019;
9:594-604. [PMID:
30984535 PMCID:
PMC6443995 DOI:
10.1002/2211-5463.12604]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 12/03/2022] Open
Abstract
Transthyretin (TTR) is a transporter for thyroid hormone and retinol binding protein that has recently been reported to have proteolytic activity against certain substrates, including amidated neuropeptide Y (NPY). However, the proteolytic activity of TTR towards NPY is not fully understood. Here, we used fluorescence-based assays to determine the catalytic kinetics of human TTR towards human amidated NPY. The Michaelis constant (KM) and catalytic efficiency (kcat/KM) of TTR proteolysis were 15.88 ± 0.44 μm and 687 081 ± 35 692 m -1·s-1, respectively. In addition, we demonstrated an effect of the C-terminal sequence of TTR. When the C-terminal sequence of TTR was made more hydrophobic, the KM and kcat/KM changed to 12.87 ± 0.22 μm and 983 755 ± 18 704 m -1·s-1, respectively. Our results may be useful for the development of TTR as a therapeutic agent with low risk of the undesirable symptoms that develop from amidated NPY, and for further improvement of the kcat/KM of TTR.
Collapse