1
|
Kangari P, Salahlou R, Vandghanooni S. Harnessing the Therapeutic Potential of Mesenchymal Stem Cells in Cancer Treatment. Adv Pharm Bull 2024; 14:574-590. [PMID: 39494266 PMCID: PMC11530882 DOI: 10.34172/apb.2024.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer, as a complicated disease, is considered to be one of the major leading causes of death globally. Although various cancer therapeutic strategies have been established, however, some issues confine the efficacies of the treatments. In recent decades researchers for finding efficient therapeutic solutions have extensively focused on the abilities of stem cells in cancer inhibition. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can the most widely extracted from various sources such as the bone marrow (BM), placenta, umbilical cord (UC), menses blood, Wharton's jelly (WJ), adipose tissue and dental pulp (DP). These cells are capable of differentiating into the osteoblasts, chondrocytes, and adipocytes. Due to the unique characteristics of MSCs such as paracrine effects, immunomodulation, tumor-tropism, and migration, they are considered promising candidates for cancer therapeutics. Currently, MSCs are an excellent living carrier for delivery of therapeutic genes and chemical agents to target tumor sites. Also, exosomes, the most important extracellular vesicle released from MSCs, act as a strong cell-free tool for cancer therapeutics. MSCs can prevent cancer progression by inhibiting several signaling pathways, such as wnt/β-catenin and PI3K/AKT/mTOR. However, there are several challenges associated with the use of MSCs and their exosomes in the field of therapy that need to be considered. This review explores the significance of MSCs in cell-based therapy, focusing on their homing properties and immunomodulatory characteristics. It also examines the potential of using MSCs as carriers for delivery of anticancer agents and their role in modulating the signal transduction pathways of cancer cells.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Tong D, Gobert S, Reuzeau A, Farges JC, Leveque M, Bolon M, Costantini A, Pasdeloup M, Lafont J, Ducret M, Bekhouche M. Dental pulp mesenchymal stem cells-response to fibrin hydrogel reveals ITGA2 and MMPs expression. Heliyon 2024; 10:e32891. [PMID: 39027533 PMCID: PMC11255596 DOI: 10.1016/j.heliyon.2024.e32891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Regenerative endodontic procedures (REP) aim at reestablishing tooth vitality by replacing the irreversibly damaged dental pulp removed by the dental practitioner with a new functional one. The current treatment of advanced caries relies on the replacement of the inflamed or necrosed dental pulp with an inert filling material. This leads to a functional but non-vital tooth, which lacks the ability to sense dental tissue damage, and to protect from further bacterial attack. Therapeutic strategies inspired by tissue engineering called REP propose to regenerate a fully functional dental pulp directly in the canal space. Promising results were obtained using dental pulp mesenchymal stem cells (DP-MSCs) in combination with bio-inspired artificial and temporary 3D hydrogels made of extracellular matrix molecules such as collagen and fibrin biomacromolecules. However, the uncontrolled mechanisms of DP regeneration from DP-MSCs in 3D biomacromolecules fail to regenerate a fully functional DP and can induce fibrotic scarring or mineralized tissue formation to a non-negligible extent. The lack of knowledge regarding the early molecular mechanisms initiated by DP-MSCs seeded in ECM-made hydrogels is a scientific lock for REP. In this study, we investigated the early DP-MSC-response in a 3D fibrin hydrogel. DP-MSCs isolated from human third molars were cultured for 24 h in the fibrin hydrogel. The differential transcript levels of extracellular and cell surface genes were screened with 84-gene PCR array. Out of the 84 genes screened, 9 were found to be overexpressed, including those coding for the integrin alpha 2 subunit, the collagenase MMP1 and stromelysins MMP3, MMP10 and MMP12. Over-expression of ITGA2 was confirmed by RT-qPCR. The expression of alpha 2 integrin subunit protein was assessed over time by immunoblot and immunofluorescence staining. The increase in the transcript level of MMP1, MMP3, MM10 and MMP12 was confirmed by RT-qPCR. The overexpression of MMP1 and 3 at the protein level was assessed by immunoblot. MMP3 expression by DP-MSCs was observed by immunofluorescence staining. This work demonstrates overexpression of ITGA2 and of MMP1, 3, 10 and 12 by DP-MSCs cultured in a fibrin hydrogel. The main preliminary extracellular and cell surface response of the DP-MSCs to fibrin hydrogel seems to rely on a ITGA2/MMP3 axis. Further investigations are needed to precisely decipher the role of this axis in dental pulp tissue building. Nevertheless, this work identifies extracellular and cell surface molecules that could be potential checkpoints to be targeted to guide proper dental pulp tissue regeneration.
Collapse
Affiliation(s)
- David Tong
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Stéphanie Gobert
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Alicia Reuzeau
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jean-Christophe Farges
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marianne Leveque
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Marie Bolon
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Arthur Costantini
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marielle Pasdeloup
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jérôme Lafont
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Maxime Ducret
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
| | - Mourad Bekhouche
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| |
Collapse
|
3
|
Kim D, Kim DH. Subcellular mechano-regulation of cell migration in confined extracellular microenvironment. BIOPHYSICS REVIEWS 2023; 4:041305. [PMID: 38505424 PMCID: PMC10903498 DOI: 10.1063/5.0185377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 03/21/2024]
Abstract
Cell migration is a highly coordinated cellular event that determines diverse physiological and pathological processes in which the continuous interaction of a migrating cell with neighboring cells or the extracellular matrix is regulated by the physical setting of the extracellular microenvironment. In confined spaces, cell migration occurs differently compared to unconfined open spaces owing to the additional forces that limit cell motility, which create a driving bias for cells to invade the confined space, resulting in a distinct cell motility process compared to what is expected in open spaces. Moreover, cells in confined environments can be subjected to elevated mechanical compression, which causes physical stimuli and activates the damage repair cycle in the cell, including the DNA in the nucleus. Although cells have a self-restoring system to repair damage from the cell membrane to the genetic components of the nucleus, this process may result in genetic and/or epigenetic alterations that can increase the risk of the progression of diverse diseases, such as cancer and immune disorders. Furthermore, there has been a shift in the paradigm of bioengineering from the development of new biomaterials to controlling biophysical cues and fine-tuning cell behaviors to cure damaged/diseased tissues. The external physical cues perceived by cells are transduced along the mechanosensitive machinery, which is further channeled into the nucleus through subcellular molecular linkages of the nucleoskeleton and cytoskeleton or the biochemical translocation of transcription factors. Thus, external cues can directly or indirectly regulate genetic transcriptional processes and nuclear mechanics, ultimately determining cell fate. In this review, we discuss the importance of the biophysical cues, response mechanisms, and mechanical models of cell migration in confined environments. We also discuss the effect of force-dependent deformation of subcellular components, specifically focusing on subnuclear organelles, such as nuclear membranes and chromosomal organization. This review will provide a biophysical perspective on cancer progression and metastasis as well as abnormal cellular proliferation.
Collapse
Affiliation(s)
- Daesan Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | | |
Collapse
|
4
|
Jakl V, Popp T, Haupt J, Port M, Roesler R, Wiese S, Friemert B, Rojewski MT, Schrezenmeier H. Effect of Expansion Media on Functional Characteristics of Bone Marrow-Derived Mesenchymal Stromal Cells. Cells 2023; 12:2105. [PMID: 37626914 PMCID: PMC10453497 DOI: 10.3390/cells12162105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFβ, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.
Collapse
Affiliation(s)
- Viktoria Jakl
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Julian Haupt
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Reinhild Roesler
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Benedikt Friemert
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Markus T. Rojewski
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
5
|
Chaves Filho AJM, Mottin M, Lós DB, Andrade CH, Macedo DS. The tetrapartite synapse in neuropsychiatric disorders: Matrix metalloproteinases (MMPs) as promising targets for treatment and rational drug design. Biochimie 2022; 201:79-99. [PMID: 35931337 DOI: 10.1016/j.biochi.2022.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/26/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Inflammation and an exacerbated immune response are widely accepted contributing mechanisms to the genesis and progression of major neuropsychiatric disorders. However, despite the impressive advances in understanding the neurobiology of these disorders, there is still no approved drug directly linked to the regulation of inflammation or brain immune responses. Importantly, matrix metalloproteinases (MMPs) comprise a group of structurally related endopeptidases primarily involved in remodeling extracellular matrix (ECM). In the central nervous system (CNS), these proteases control synaptic plasticity and strength, patency of the blood-brain barrier, and glia-neuron interactions through cleaved and non-cleaved mediators. Several pieces of evidence have pointed to a complex scenario of MMPs dysregulation triggered by neuroinflammation. Furthermore, major psychiatric disorders' affective symptoms and neurocognitive abnormalities are related to MMPs-mediated ECM changes and neuroglia activation. In the past decade, research efforts have been directed to broad-spectrum MMPs inhibitors with frustrating clinical results. However, in the light of recent advances in combinatorial chemistry and drug design technologies, specific and CNS-oriented MMPs modulators have been proposed as a new frontier of therapy for regulating ECM properties in the CNS. Therefore, here we aim to discuss the state of the art of MMPs and ECM abnormalities in major neuropsychiatric disorders, namely depression, bipolar disorder, and schizophrenia, the possible neuro-immune interactions involved in this complex scenario of MMPs dysregulation and propose these endopeptidases as promising targets for rational drug design.
Collapse
Affiliation(s)
- Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Laboratory for Molecular Modeling and Drug Design - LabMol, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design - LabMol, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Deniele Bezerra Lós
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Carolina Horta Andrade
- Laboratory for Molecular Modeling and Drug Design - LabMol, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
6
|
Zhang L, Zheng B, Guo R, Miao Y, Li B. Bone marrow mesenchymal stem cell-mediated ultrasmall gold nanoclusters and hNIS gene synergize radiotherapy for breast cancer. J Mater Chem B 2021; 9:2866-2876. [PMID: 33720270 DOI: 10.1039/d1tb00186h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human sodium iodide symporter (hNIS) can be linked to the downstream of radiation-sensitive early growth response protein1 (Egr1) promoter, and activated by the Egr1 following 131I treatment. However, the rapid outflow of 131I restricted the radiotherapy effect. To overcome this barrier, ultrasmall gold nanoclusters (usAuNCs) were used to enhance the radiotherapy efficacy of Egr1-hNIS for its radiation sensitization. In this work, we prepared "cell bomb" BMSCs carrying both GSH@AuNCs and Egr1-hNIS. We found that the "cell bomb" can target TNBC tumor and reach a maximum 131I concentration 9 h following 131I injection. Colony formation assay revealed that 131I, 131I combined with GSH@AuNCs could independently inhibit 39.5% and 66.4% of cell growth, respectively. Moreover, in vivo131I therapy further demonstrated that the growth of triple negative breast cancer (TNBC) was controlled by BMSC-Egr1-hNIS + AuNCs group, with relative volume inhibition percentages of 56.16% (compared with the control group) and 36.20% (compared with the BMSC-Egr1-hNIS group), respectively. To summarize, we successfully prepared BMSC-Egr1-hNIS carrying GSH@AuNCs to target TNBC which could synergistically improve the efficacy of hNIS gene therapy.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai JiaoTong University, P. R. China.
| | | | | | | | | |
Collapse
|
7
|
Saidova AA, Vorobjev IA. Lineage Commitment, Signaling Pathways, and the Cytoskeleton Systems in Mesenchymal Stem Cells. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:13-25. [PMID: 31663422 DOI: 10.1089/ten.teb.2019.0250] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) from adult tissues are promising candidates for personalized cell therapy and tissue engineering. Significant progress was achieved in our understanding of the regulation of MSCs proliferation and differentiation by different cues during the past years. Proliferation and differentiation of MSCs are sensitive to the extracellular matrix (ECM) properties, physical cues, and chemical signaling. Sheath stress, matrix stiffness, surface adhesiveness, and micro- and nanotopography define cell shape and dictate lineage commitment of MSCs even in the absence of specific chemical signals. We discuss mechanotransduction as the major route from ECM through the cytoskeleton toward signaling pathways and gene expression. All components of the cytoskeleton from primary cilium and focal adhesions (FAs) to actin, microtubules (MTs), and intermediate filaments (IFs) are involved in the mechanotransduction. Differentiation of MSCs is regulated via the complex network of interrelated signaling pathways, including RhoA/ROCK, Akt/Erk, and YAP/TAZ effectors of Hippo pathway. These pathways could be regulated both by chemical and mechanical stimuli. Attenuation of these pathways in MSCs results in specific changes in FAs and actin cytoskeleton. Besides, differentiation of MSCs affects MTs and IFs. Recent findings highlight the role of intranuclear actin in the regulation of transcription factors in response to mechanical environmental stimuli. Alterations of cytoskeletal components reflect the MSC senescence state and their migratory capacity. In this review, we discuss the relationships between the molecular interactions in signaling pathways and morphological response of cytoskeletal components and reveal the complex interrelations between cytoskeleton systems and signaling pathways during lineage commitment of MSCs. Impact Statement This review describes the complex network of relationships between mechanical and biochemical stimuli in mesenchymal stem cells (MSC) and their balance which defines the morphological changes of cell shape due to rearrangement of cytoskeletal systems during lineage commitment of MSCs.
Collapse
Affiliation(s)
- Aleena A Saidova
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia.,Center of Experimental Embryology and Reproductive Biotechnology, Moscow, Russia
| | - Ivan A Vorobjev
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Department of Biology, School of Science and Humanities and National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
8
|
Huang TW, Li ST, Wang YH, Young TH. Regulation of chitosan-mediated differentiation of human olfactory receptor neurons by insulin-like growth factor binding protein-2. Acta Biomater 2019; 97:399-408. [PMID: 31421230 DOI: 10.1016/j.actbio.2019.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/23/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Olfaction is normally taken for granted in our lives, not only assisting us to escape from dangers, but also increasing our quality of life. Although olfactory neuroepithelium (ON) can reconstitute its olfactory receptor neurons (ORNs) after injury, no adequate treatment for olfactory loss has yet emerged. The present study investigates the role of glycosaminoglycans (GAGs) in modulating olfactory neuronal homeostasis and elucidates the regulatory mechanism. This work isolates and cultures human olfactory neuroepithelial cells (HONCs) with various GAGs for 7 days, and find that chitosan promotes ORN maturation, expressing olfactory marker protein (OMP) and its functional components. Growth factor protein array, ELISA and western blot analysis reveal that insulin-like growth factor binding protein 2 (IGFBP2) shows a higher level in chitosan-treated HONCs than in controls. Biological activity of insulin-like growth factor-1 (IGF-1), IGF-2 and IGF-1 receptor (IGF1R) is further investigated. Experimental results indicate that IGF-1 and IGF-2 enhance the growth of immature ORNs, expressing βIII tubulin, but decrease mature ORNs. Instead, down-regulation of phosphorylated IGF1R lifts the OMP expression, and lowers the βIII tubulin expression, by incubation with the phosphorylated inhibitor of IGF1R, OSI-906. Finally, the effect of chitosan on ORN maturity is antagonized by concurrently adding IGFBP2 protease, matrix metallopeptidase-1. Overall, our data demonstrate that chitosan promotes ORN differentiation by raising the level of IGFBP2 to sequestrate the IGFs-IGF1R signaling. STATEMENT OF SIGNIFICANCE: Olfactory dysfunction serves as a crucial alarm in neurodegenerative diseases, and one of its causes is lacking of sufficient mature olfactory receptor neurons to detect odorants in the air. However, the clinical treatment for olfactory dysfunction is still controversial. Chitosan is the natural linear polysaccharide and exists in rat olfactory neuroepithelium. Previously, chitosan has been demonstrated to mediate the differentiation of olfactory receptor neurons in an in vitro rat model, but the mechanism is unknown. The study aims to evaluate the role and mechanism of chitosan in an in vitro human olfactory neurons model. Overall, these results reveal that chitosan is a potential agent for treating olfactory disorder by the maintenance of olfactory neural homeostasis. This is the first report to demonstrate that chitosan promotes differentiation of olfactory receptor neurons through increasing IGFBP2 to sequestrate the IGFs-IGF1R.
Collapse
|
9
|
Yang W, Ma B. A Mini-Review: The Therapeutic Potential of Bone Marrow Mesenchymal Stem Cells and Relevant Signaling Cascades. Curr Stem Cell Res Ther 2019; 14:214-218. [PMID: 30207242 DOI: 10.2174/1574888x13666180912141228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 01/03/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) characterized multi-directional differentiation, low immunogenicity and high portability, serve as ideal "seed cells" in ophthalmological disease therapy. Therefore, in this mini-review, we examined the recent literature concerning the potential application of BMSCs for the treatment of ophthalmological disease, that includes: the cellular activity of BMSCs transplantation, migration and homing, as well as the immuno-modulatory and antiinflammatory effects of BMSCs and signaling involved. Each aspect is complementary to the others and together these aspects promoted further understanding of the potential use of BMSCs in treating ophthalmological diseases.
Collapse
Affiliation(s)
- Wen Yang
- Department of Ophthalmology, Xi'an Fourth Hospital, Xi'an Shaanxi, 710000, China
| | - Bo Ma
- Department of Ophthalmology, Xi'an Fourth Hospital, Xi'an Shaanxi, 710000, China
| |
Collapse
|
10
|
Wu K, Zhang R, Lu Y, Wen L, Li Y, Duan R, Yao Y, Jia Y. Lin28B regulates the fate of grafted mesenchymal stem cells and enhances their protective effects against Alzheimer's disease by upregulating IGF‐2. J Cell Physiol 2019; 234:21860-21876. [PMID: 31066045 DOI: 10.1002/jcp.28750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Kaimin Wu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Ruiyi Zhang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Yanhui Lu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Lulu Wen
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Yanfei Li
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Ranran Duan
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Yaobing Yao
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Yanjie Jia
- Department of Neurology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
11
|
Wang J, Zhu L, Chen X, Huang R, Wang S, Dong P. Human Bone Marrow Mesenchymal Stem Cells Functionalized by Hybrid Baculovirus-Adeno-Associated Viral Vectors for Targeting Hypopharyngeal Carcinoma. Stem Cells Dev 2019; 28:543-553. [PMID: 30747033 DOI: 10.1089/scd.2018.0252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hypopharyngeal carcinoma is a common malignant tumor of the head and neck with a very poor prognosis; the median survival time for curatively treated patients was 17.2 months in India. However, cell-based gene therapy holds promise to improve patient outcomes. In this study, we investigated whether human bone marrow mesenchymal stem cells (BMSCs) possess potential homing capacity for hypopharyngeal carcinoma. To monitor the efficiency of BMSC transplantation therapy through reporter gene imaging, we employed a hybrid baculovirus vector containing the Luc-P2A-eGFP fusion or sodium iodide symporter (NIS) sequence under the control of the cytomegalovirus promoter. To enhance the transfection efficiency, baculovirus vectors (Bac-CMV-Luc-P2A-eGFP-ITR and Bac-CMV-NIS-ITR) were flanked by inverted terminal repeats (ITRs), which are key elements of adeno-associated viruses. The infection efficiency of Bac-CMV-Luc-P2A-eGFP-ITR in BMSCs was as high as 92.84 ± 1.14% with no obvious toxic effects at a multiplicity of infection of 400. Moreover, Bac-CMV-NIS-ITR-infected BMSCs showed highly efficient radioactive iodide (125I) uptake; these high uptake levels were maintained for at least 2 h. Transwell migration assays further demonstrated the chemotaxis of BMSCs to hypopharyngeal carcinoma cells (FaDu cells) in vitro. BMSCs modified by firefly luciferase report gene or NIS were injected into nude mice with hypopharyngeal carcinoma, and changes in the localization of the BMSCs were successfully tracked with bioluminescent imaging and micro-single-photon emission computed tomography imaging. These data indicate the potential utility of BMSCs as a promising targeted-delivery vehicle for hypopharyngeal carcinoma gene therapy. Importantly, BMSCs may represent a promising targeting vector for general tumor radionuclide therapy.
Collapse
Affiliation(s)
- Jun Wang
- 1 Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Department of Otolaryngology and Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liying Zhu
- 3 Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinwei Chen
- 1 Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruofei Huang
- 1 Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shili Wang
- 2 Department of Otolaryngology and Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pin Dong
- 1 Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng 2019; 3:90-104. [PMID: 30944433 DOI: 10.1038/s41551-018-0325-8] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) for basic research and clinical applications are manufactured and developed as unique cell products by many different manufacturers and laboratories, often under different conditions. The lack of standardization of MSC identity has limited consensus around which MSC properties are relevant for specific outcomes. In this Review, we examine how the choice of media, cell source, culture environment and storage affects the phenotype and clinical utility of MSC-based products, and discuss the techniques better suited to prime MSCs with specific phenotypes of interest and the need for the continued development of standardized assays that provide quality assurance for clinical-grade MSCs. Bioequivalence between cell products and batches must be investigated rather than assumed, so that the diversity of phenotypes between differing MSC products can be accounted for to identify products with the highest therapeutic potential and to preserve their safety in clinical treatments.
Collapse
|
13
|
Mesenchymal Stem Cells as Regulators of Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1144:147-166. [DOI: 10.1007/5584_2018_311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Su P, Tian Y, Yang C, Ma X, Wang X, Pei J, Qian A. Mesenchymal Stem Cell Migration during Bone Formation and Bone Diseases Therapy. Int J Mol Sci 2018; 19:E2343. [PMID: 30096908 PMCID: PMC6121650 DOI: 10.3390/ijms19082343] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
During bone modeling, remodeling, and bone fracture repair, mesenchymal stem cells (MSCs) differentiate into chondrocyte or osteoblast to comply bone formation and regeneration. As multipotent stem cells, MSCs were used to treat bone diseases during the past several decades. However, most of these implications just focused on promoting MSC differentiation. Furthermore, cell migration is also a key issue for bone formation and bone diseases treatment. Abnormal MSC migration could cause different kinds of bone diseases, including osteoporosis. Additionally, for bone disease treatment, the migration of endogenous or exogenous MSCs to bone injury sites is required. Recently, researchers have paid more and more attention to two critical points. One is how to apply MSC migration to bone disease therapy. The other is how to enhance MSC migration to improve the therapeutic efficacy of bone diseases. Some considerable outcomes showed that enhancing MSC migration might be a novel trick for reversing bone loss and other bone diseases, such as osteoporosis, fracture, and osteoarthritis (OA). Although plenty of challenges need to be conquered, application of endogenous and exogenous MSC migration and developing different strategies to improve therapeutic efficacy through enhancing MSC migration to target tissue might be the trend in the future for bone disease treatment.
Collapse
Affiliation(s)
- Peihong Su
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Ye Tian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Chaofei Yang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xiaoli Ma
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xue Wang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Jiawei Pei
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|