1
|
Tsuruya Y, Yamaguchi A, Yamazaki-Takai M, Zhenyu J, Takai H, Nakayama Y, Ogata Y. Interleukin-1β regulates odontogenic ameloblast-associated protein gene transcription in human gingival epithelial cells. Odontology 2022; 110:557-568. [PMID: 35179670 DOI: 10.1007/s10266-022-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/30/2022] [Indexed: 11/30/2022]
Abstract
Junction epithelium (JE) is located apical to the bottom of the gingival sulcus and binds enamel to hemidesmosomes to protect the periodontal tissue from bacterial infection. Function of odontogenic ameloblast-associated protein (ODAM) is suggested by its expression sites (JE and maturation stage ameloblasts) to be involved in the adhesion between the JE and enamel, and odontogenesis. To analyze the changes in ODAM gene and protein expressions in inflamed gingiva, Ca9-22 gingival epithelial cells were stimulated with 1 ng/ml interleukin-1β (IL-1β) for 3-24 h, and ODAM mRNA and protein levels were analyzed by real-time PCR and Western blotting. Luciferase (LUC) constructs were made ligating various lengths of human ODAM gene promoters and performed LUC analyses in Ca9-22 cells. Gel shift and chromatin immunoprecipitation (ChIP) assays were performed. IL-1β induced ODAM mRNA and protein levels at 6-24 h. IL-1β increased LUC activities of the ODAM gene promoter constructs from - 85 to - 950. These activities were blocked by protein kinase A, tyrosine kinase, mitogen-activated protein (MAP) kinase kinase and phosphoinositide 3-kinase inhibitors. Gel shift and ChIP assays showed that IL-1β induced CCAAT/enhancer-binding protein (C/EBP) β and Yin Yang1 (YY1) binding to C/EBP1, 2, 3, and YY1 elements. These data indicate that IL-1β stimulates ODAM gene transcription mediated through C/EBP1, C/EBP2, C/EBP3, and YY1 elements in the human ODAM gene promoter.
Collapse
Affiliation(s)
- Yuto Tsuruya
- Departments of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Arisa Yamaguchi
- Departments of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Mizuho Yamazaki-Takai
- Departments of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Jin Zhenyu
- Departments of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Hideki Takai
- Departments of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Yohei Nakayama
- Departments of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Yorimasa Ogata
- Departments of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan. .,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan.
| |
Collapse
|
2
|
Wang S, Zhao Q, Li G, Wang M, Liu H, Yu X, Chen J, Li P, Dong L, Zhou G, Cui Y, Wang M, Liu L, Wang A. The cholinergic system, intelligence, and dental fluorosis in school-aged children with low-to-moderate fluoride exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112959. [PMID: 34808511 DOI: 10.1016/j.ecoenv.2021.112959] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Disruption of cholinergic neurotransmission can affect cognition, but little is known about whether low-to-moderate fluoride exposure affects cholinergic system and its effect on the prevalence of dental fluorosis (DF) and intelligence quotient (IQ). A cross-sectional study was conducted to explore the associations of moderate fluoride exposure and cholinergic system in relation to children's DF and IQ. We recruited 709 resident children in Tianjin, China. Ion selective electrode method was used to detect fluoride concentrations in water and urine. Cholinergic system was assessed by the detection of choline acetyltransferase (ChAT), acetylcholinesterase (AChE) and acetylcholine (ACh) levels in serum. Compared with children in the first quartile, those in fourth quartile the risk of either developing DF or IQ < 120 increased by 19% and 20% for water and urinary fluoride. The risk of having both increased by 58% and 62% in third and fourth quartile for water fluoride, 52% and 65% for urinary fluoride. Water fluoride concentrations were positively associated with AChE and negatively associated with ChAT and ACh, trends were same for urinary fluoride except for ACh. The risk of either developing DF or having non-high intelligence rose by 22% (95%CI: 1.07%, 1.38%) for the fourth quartile than those in the first quartile of AChE, for having the both, the risk was 1.27 (95%CI: 1.07, 1.50), 1.37 (95%CI: 1.17, 1.62) and 1.44 (95%CI: 1.23, 1.68) in second, third and fourth quartiles. The mediation proportion by AChE between water fluoride and either developing DF or IQ < 120 was 15.7%. For both to exist, the proportion was 6.7% and 7.2% for water and urinary fluoride. Our findings suggest low-to-moderate fluoride exposure was associated with dysfunction of cholinergic system for children. AChE may partly mediate the prevalence of DF and lower probability of having superior and above intelligence.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qian Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Gaochun Li
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Mengwei Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hongliang Liu
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | - Xingchen Yu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jingwen Chen
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pei Li
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lixin Dong
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Guoyu Zhou
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yushan Cui
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | - Mengru Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li Liu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Aiguo Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
5
|
Nakayama Y, Kobayashi R, Iwai Y, Noda K, Yamazaki M, Kurita-Ochiai T, Yoshimura A, Ganss B, Ogata Y. C/EBPβ and YY1 bind and interact with Smad3 to modulate lipopolysaccharide-induced amelotin gene transcription in mouse gingival epithelial cells. FEBS Open Bio 2019; 9:276-290. [PMID: 30761253 PMCID: PMC6356155 DOI: 10.1002/2211-5463.12566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/21/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Junctional epithelium (JE) develops from reduced enamel epithelium during tooth formation and is critical for the maintenance of healthy periodontal tissue through ensuring appropriate immune responses and the rapid turnover of gingival epithelial cells. We have previously shown a relationship between inflammatory cytokines and expression of JE‐specific genes, such as amelotin (AMTN), in gingival epithelial cells. Here, we elucidated the effects of Porphyromonas gingivalis‐derived lipopolysaccharide (PgLPS) on Amtn gene transcription and the interaction of transcription factors. To determine the molecular basis of transcriptional regulation of the Amtn gene by PgLPS, we performed real‐time PCR and carried out luciferase assays using a mouse Amtn gene promoter linked to a luciferase reporter gene in mouse gingival epithelial GE1 cells. Gel mobility shift and chromatin immunoprecipitation assays were performed to identify response elements bound to LPS‐induced transcription factors. Next, we analyzed protein levels of the LPS‐induced transcription factors and the interaction of transcription factors by western blotting and immunoprecipitation. LPS increased Amtn mRNA levels and elevated luciferase activities of constructs containing regions between −116 and −238 of the mouse Amtn gene promoter. CCAAT/enhancer‐binding protein (C/EBP) 1–, C/EBP2– and Ying Yang 1 (YY1)–nuclear protein complexes were increased by LPS treatment. Furthermore, we identified LPS‐modulated interactions with C/EBPβ, YY1 and Smad3. These results demonstrate that PgLPS regulates Amtn gene transcription via binding of C/EBPβ–Smad3 and YY1–Smad3 complexes to C/EBP1, C/EBP2 and YY1 response elements in the mouse Amtn gene promoter.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology Nihon University School of Dentistry at Matsudo Chiba Japan.,Research Institute of Oral Science Nihon University School of Dentistry at Matsudo Chiba Japan
| | - Ryoki Kobayashi
- Research Institute of Oral Science Nihon University School of Dentistry at Matsudo Chiba Japan.,Department of Oral Immunology Nihon University School of Dentistry at Matsudo Chiba Japan
| | - Yasunobu Iwai
- Department of Periodontology Nihon University School of Dentistry at Matsudo Chiba Japan
| | - Keisuke Noda
- Department of Periodontology Nihon University School of Dentistry at Matsudo Chiba Japan
| | - Mizuho Yamazaki
- Department of Periodontology Nihon University School of Dentistry at Matsudo Chiba Japan
| | - Tomoko Kurita-Ochiai
- Research Institute of Oral Science Nihon University School of Dentistry at Matsudo Chiba Japan.,Department of Oral Immunology Nihon University School of Dentistry at Matsudo Chiba Japan
| | - Atsutoshi Yoshimura
- Department of Periodontology Nagasaki University Graduate School of Biomedical Sciences Japan
| | - Bernhard Ganss
- Matrix Dynamics Group Faculty of Dentistry University of Toronto Canada
| | - Yorimasa Ogata
- Department of Periodontology Nihon University School of Dentistry at Matsudo Chiba Japan.,Research Institute of Oral Science Nihon University School of Dentistry at Matsudo Chiba Japan
| |
Collapse
|
6
|
Nakayama Y, Tsuruya Y, Noda K, Yamazaki-Takai M, Iwai Y, Ganss B, Ogata Y. Negative feedback by SNAI2 regulates TGFβ1-induced amelotin gene transcription in epithelial-mesenchymal transition. J Cell Physiol 2018; 234:11474-11489. [PMID: 30488439 DOI: 10.1002/jcp.27804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/01/2018] [Indexed: 01/06/2023]
Abstract
Junctional epithelium (JE) demonstrates biological responses with the rapid turnover of gingival epithelial cells. The state occurs in inflammation of gingiva and wound healing after periodontal therapy. To understand the underlying mechanisms and to maintain homeostasis of JE, it is important to investigate roles of JE-specific genes. Amelotin (AMTN) is localized at JE and regulated by inflammatory cytokines and apoptotic factors that represent a critical role of AMTN in stabilizing the dentogingival attachment, which is an entrance of oral bacteria. In this study, we demonstrated that the AMTN gene expression was regulated by SNAI2 and transforming growth factor β1 (TGFβ1)-induced epithelial-mesenchymal transition (EMT) that occurs in wound healing and fibrosis during chronic inflammation. SNAI2 downregulated AMTN gene expression via SNAI2 bindings to E-boxes (E2 and E4) in the mouse AMTN gene promoter in EMT of gingival epithelial cells. Meanwhile, TGFβ1-induced AMTN gene expression was attenuated by SNAI2 and TGFβ1-induced SNAI2, without inhibition of the TGFβ1-Smad3 signaling pathway. Moreover, SNAI2 small interfering RNA (siRNA) rescued SNAI2-induced downregulation of AMTN gene expression, and TGFβ1-induced AMTN gene expression was potentiated by SNAI2 siRNA. Taken together, these data demonstrated that AMTN gene expression in the promotion of EMT was downregulated by SNAI2. The inhibitory effect of AMTN gene expression was an independent feedback on the TGFβ1-Smad3 signaling pathway, suggesting that the mechanism can be engaged in maintaining homeostasis of gingival epithelial cells at JE and the wound healing phase.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yuto Tsuruya
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Keisuke Noda
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Mizuho Yamazaki-Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yasunobu Iwai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|