1
|
Zhao Y, Yuan C, Shi Y, Liu X, Luo L, Zhang L, Pešić M, Yao H, Li L. Drug screening approaches for small-molecule compounds in cancer-targeted therapy. J Drug Target 2025; 33:368-383. [PMID: 39575843 DOI: 10.1080/1061186x.2024.2427185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 02/08/2025]
Abstract
Small-molecule compounds exhibit distinct pharmacological properties and clinical effectiveness. Over the past decade, advances in covalent drug discovery have led to successful small-molecule drugs, such as EGFR, BTK, and KRAS (G12C) inhibitors, for cancer therapy. Researchers are paying more attention to refining drug screening methods aiming for high throughput, fast speed, high specificity, and accuracy. Therefore, the discovery and development of small-molecule drugs has been facilitated by significantly reducing screening time and financial resources, and increasing promising lead compounds compared with traditional methods. This review aims to introduce classical and emerging methods for screening small-molecule compounds in targeted cancer therapy. It includes classification, principles, advantages, disadvantages, and successful applications, serving as valuable references for subsequent researchers.
Collapse
Affiliation(s)
- Yelin Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenyu Yuan
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Xicheng District, Beijing, China
| | - Liaoxin Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Li Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research, 'Siniša Stanković'- National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Hongjuan Yao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang Li
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Ogawa N, Ohta M, Ikeguchi M. Conformational Selectivity of ITK Inhibitors: Insights from Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:7860-7872. [PMID: 38069816 PMCID: PMC10751800 DOI: 10.1021/acs.jcim.3c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023]
Abstract
Interleukin-2-inducible T-cell kinase (ITK) regulates the response to T-cell receptor signaling and is a drug target for inflammatory and immunological diseases. Molecules that bind preferentially to the active form of ITK have low selectivity between kinases, whereas those that bind preferentially to the inactive form have high selectivity for ITK. Therefore, computational methods to predict the conformational selectivity of compounds are required to design highly selective ITK inhibitors. In this study, we performed absolute binding free-energy perturbation (ABFEP) simulations for 11 compounds on both active and inactive forms of ITK, and the calculated binding free energies were compared with experimental data. The conformational selectivity of 10 of the 11 compounds was correctly predicted using ABFEP. To investigate the mechanism underlying the stabilization of the active and inactive structures by the compounds, we performed extensive, conventional molecular dynamics simulations, which revealed that the compound-induced stabilization of the P-loop and linkage of conformational changes in L489, V419, F501, and M410 upon compound binding were critical factors. A guideline for designing inactive-form binders is proposed based on these key structural factors. The ABFEP and the created guidelines are expected to facilitate the discovery of highly selective ITK inhibitors.
Collapse
Affiliation(s)
- Naoki Ogawa
- Graduate
School of Medicinal Life Science, Yokohama
City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Central
Pharmaceutical Research Institute, Japan
Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Masateru Ohta
- HPC-
and AI-Driven Drug Development Platform Division, Center for Computational
Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate
School of Medicinal Life Science, Yokohama
City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- HPC-
and AI-Driven Drug Development Platform Division, Center for Computational
Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
3
|
Wilson CG, Arkin MR. Screening and biophysics in small molecule discovery. SMALL MOLECULE DRUG DISCOVERY 2020:127-161. [DOI: 10.1016/b978-0-12-818349-6.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Hantani R, Hanawa S, Oie S, Umetani K, Sato T, Hantani Y. Identification of a New Inhibitor That Stabilizes Interleukin-2-Inducible T-Cell Kinase in Its Inactive Conformation. SLAS DISCOVERY 2019; 24:854-862. [PMID: 31247148 DOI: 10.1177/2472555219857542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interleukin-2-inducible T-cell kinase (ITK) plays an important role in T-cell signaling and is considered a promising drug target. As the ATP binding sites of protein kinases are highly conserved, the design of selective kinase inhibitors remains a challenge. Targeting inactive kinase conformations can address the issue of kinase inhibitor selectivity. It is important for selectivity considerations to identify compounds that stabilize inactive conformations from the primary screen hits. Here we screened a library of 390,000 compounds with an ADP-Glo assay using dephosphorylated ITK. After a surface plasmon resonance (SPR) assay was used to filter out promiscuous inhibitors, 105 hits were confirmed. Next, we used a fluorescent biosensor to enable the detection of conformational changes to identify inactive conformation inhibitors. A single-cysteine-substituted ITK mutant was labeled with acrylodan, and fluorescence emission was monitored. Using a fluorescent biosensor assay, we identified 34 inactive conformation inhibitors from SPR hits. Among them, one compound was bound to a site other than the ATP pocket and exhibited excellent selectivity against a kinase panel. Overall, (1) biochemical screening using dephosphorylated kinase, (2) hit confirmation by SPR assay, and (3) fluorescent biosensor assay that can distinguish inactive compounds provide a useful platform and offer opportunities to identify selective kinase inhibitors.
Collapse
Affiliation(s)
- Rie Hantani
- 1 Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco, Takatsuki, Osaka, Japan
| | - Saya Hanawa
- 1 Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco, Takatsuki, Osaka, Japan
| | - Shohei Oie
- 1 Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco, Takatsuki, Osaka, Japan
| | - Kayo Umetani
- 1 Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco, Takatsuki, Osaka, Japan
| | - Toshihiro Sato
- 1 Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco, Takatsuki, Osaka, Japan
| | - Yoshiji Hantani
- 1 Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco, Takatsuki, Osaka, Japan
| |
Collapse
|
5
|
Birman Y, Khorsand S, Tu E, Mortensen RB, Butko MT. Second-harmonic generation-based methods to detect and characterize ligand-induced RNA conformational changes. Methods 2019; 167:92-104. [PMID: 31116965 DOI: 10.1016/j.ymeth.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/11/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022] Open
Abstract
Second-harmonic generation (SHG) is a biophysical tool that senses ligand-induced conformational changes in biomolecules. The Biodesy Delta™ has been developed as a high-throughput screening platform to monitor conformational changes in proteins and oligonucleotides by SHG to support drug discovery efforts. This work will outline (1) an overview of this technology, (2) detailed protocols for optimizing screening-ready SHG assays on RNA targets, (3) practical considerations for developing robust and informative SHG measurements, and (4) a case study that demonstrates the application of these recommendations on an RNA target. The previously published theophylline aptamer SHG assay [1] was further optimized to maximize the assay window between the positive control (theophylline) and the negative control (caffeine). Optimization of this assay provides practical considerations for building a robust SHG assay on an RNA target, including testing for specific tethering of the conjugate to the surface as well as testing tool compound response stability, reversibility, and concentration-dependence/affinity. A more robust, better-performing theophylline aptamer SHG assay was achieved that would be more appropriate for conducting a screen.
Collapse
Affiliation(s)
- Yuliya Birman
- Biodesy, Inc., South San Francisco 94080, United States
| | - Sina Khorsand
- Biodesy, Inc., South San Francisco 94080, United States
| | - Erick Tu
- Biodesy, Inc., South San Francisco 94080, United States
| | | | | |
Collapse
|