1
|
Yamaguchi H, Kawahara H, Kodera N, Kumaki A, Tada Y, Tang Z, Sakai K, Ono K, Yamada M, Hanayama R. Extracellular Vesicles Contribute to the Metabolism of Transthyretin Amyloid in Hereditary Transthyretin Amyloidosis. Front Mol Biosci 2022; 9:839917. [PMID: 35402512 PMCID: PMC8983912 DOI: 10.3389/fmolb.2022.839917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Hereditary (variant) transthyretin amyloidosis (ATTRv amyloidosis), which is caused by variants in the transthyretin (TTR) gene, leads to TTR amyloid deposits in multiple organs and various symptoms such as limb ataxia, muscle weakness, and cardiac failure. Interaction between amyloid proteins and extracellular vesicles (EVs), which are secreted by various cells, is known to promote the clearance of the proteins, but it is unclear whether EVs are involved in the formation and deposition of TTR amyloid in ATTRv amyloidosis. To clarify the relationship between ATTRv amyloidosis and EVs, serum-derived EVs were analyzed. In this study, we showed that cell-derived EVs are involved in the formation of TTR amyloid deposits on the membrane of small EVs, as well as the deposition of TTR amyloid in cells. Human serum-derived small EVs also altered the degree of aggregation and deposition of TTR. Furthermore, the amount of TTR aggregates in serum-derived small EVs in patients with ATTRv amyloidosis was lower than that in healthy controls. These results indicate that EVs contribute to the metabolism of TTR amyloid, and suggest that TTR in serum-derived small EVs is a potential target for future ATTRv amyloidosis diagnosis and therapy.
Collapse
Affiliation(s)
- Hiroki Yamaguchi
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hironori Kawahara
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
- *Correspondence: Hironori Kawahara, ; Rikinari Hanayama,
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Ayanori Kumaki
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasutake Tada
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Zixin Tang
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenjiro Ono
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Internal Medicine, Division of Neurology, Kudanzaka Hospital, Tokyo, Japan
| | - Rikinari Hanayama
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
- *Correspondence: Hironori Kawahara, ; Rikinari Hanayama,
| |
Collapse
|
2
|
Cerquetella M, Marchegiani A, Mangiaterra S, Rossi G, Gavazza A, Tesei B, Spaterna A, Sagratini G, Ricciutelli M, Polzonetti V, Pucciarelli S, Vincenzetti S. Faecal proteome in clinically healthy dogs and cats: Findings in pooled faeces from 10 cats and 10 dogs. Vet Rec Open 2021; 8:e9. [PMID: 33981443 PMCID: PMC8110131 DOI: 10.1002/vro2.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In the scientific literature, there are only a few manuscripts available on small animal faecal proteomics. METHODS In the present pilot study, this evaluation was performed using pooled faecal samples from 10 clinically healthy dogs and, for the first time, in 10 clinically healthy cats by mean of two-dimensional electrophoresis followed by liquid chromatography-tandem mass spectrometry. RESULTS Our results showed the presence of nine (albumin, alkaline phosphatase, chymotrypsin-C-like, cytosol aminopeptidase, elastase-3B/proteinase E, immunoglobulins and nuclear pore membrane glycoprotein 210) and 14 (albumin, caspase recruitment domain-containing protein, chymotrypsin-like, deleted in malignant brain tumours 1 protein-like, hypothetical protein LOC107375, immunoglobulin, kallikrein-1, superoxide dismutase, transthyretin precursor, interstitial collagenase-like) different proteins in canine and feline faeces, respectively. CONCLUSION These preliminary findings document the presence of a range of proteins in the faeces of apparently healthy dogs and cats and may serve as a basis for larger, prospective studies to establish reference proteomic data against which diseased populations can be compared.
Collapse
Affiliation(s)
- Matteo Cerquetella
- School of Biosciences and Veterinary Medicine University of Camerino Matelica MC Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine University of Camerino Matelica MC Italy
| | - Sara Mangiaterra
- School of Biosciences and Veterinary Medicine University of Camerino Matelica MC Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine University of Camerino Matelica MC Italy
| | - Alessandra Gavazza
- School of Biosciences and Veterinary Medicine University of Camerino Matelica MC Italy
| | - Beniamino Tesei
- School of Biosciences and Veterinary Medicine University of Camerino Matelica MC Italy
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine University of Camerino Matelica MC Italy
| | | | | | - Valeria Polzonetti
- School of Biosciences and Veterinary Medicine University of Camerino Matelica MC Italy
- School of Biosciences and Veterinary Medicine University of Camerino Camerino MC Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine University of Camerino Matelica MC Italy
- School of Biosciences and Veterinary Medicine University of Camerino Camerino MC Italy
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine University of Camerino Matelica MC Italy
| |
Collapse
|
3
|
The discovery and development of transthyretin amyloidogenesis inhibitors: what are the lessons? Future Med Chem 2021; 13:2083-2105. [PMID: 34633220 DOI: 10.4155/fmc-2021-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Transthyretin (TTR) is associated with several human amyloid diseases. Various kinetic stabilizers have been developed to inhibit the dissociation of TTR tetramer and the formation of amyloid fibrils. Most of them are bisaryl derivatives, natural flavonoids, crown ethers and carborans. In this review article, we focus on TTR tetramer stabilizers, genetic therapeutic approaches and fibril remodelers. The binding modes of typical bisaryl derivatives, natural flavonoids, crown ethers and carborans are discussed. Based on knowledge of the binding of thyroxine to TTR tetramer, many stabilizers have been screened to dock into the thyroxine binding sites, leading to TTR tetramer stabilization. Particularly, those stabilizers with unique binding profiles have shown great potential in developing the therapeutic management of TTR amyloidogenesis.
Collapse
|
4
|
Tola AJ, Leelawatwattana L, Prapunpoj P. The catalytic kinetics of chicken transthyretin towards human Aβ 1-42. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108610. [PMID: 31454704 DOI: 10.1016/j.cbpc.2019.108610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022]
Abstract
The novel property of transthyretin (TTR) as a protease has been proposed to be significant. However, the study of TTR proteolysis properties has not been completely elucidated. Herein, we first report the catalytic activity of chicken TTR from plasma determined by using fluorescently labeled amyloid beta 1-42 peptide (Aβ1-42), and compared it with human TTR (human TTR) from plasma and recombinant Crocodylus porosus TTR. The enzyme kinetic study revealed that the affinity for Aβ1-42 of chicken TTR and C. porosus TTR (KM values were 12.72 ± 0.27 μM and 16.21 ± 0.02 μM, respectively) were significantly lower than human TTR (KM was 43.05 ± 0.39 μM). In addition, the catalytic efficiency of chicken TTR (Kcat/KM was 310,386.87 ± 13,627.12 M-1 s-1) was 4.3 and 5.5 folds higher than those of C. porosus TTR and human TTR (Kcat/KM were 72,893.80 ± 355.74 M-1 s-1 and 56,519.12 ± 5009.50 M-1 s-1, respectively), respectively. These results does not only indicated the relationship between structure and the proteolytic activity of TTR, but also suggested a potential development of TTR as a therapeutic anti-Aβ agent.
Collapse
Affiliation(s)
- Adesola Julius Tola
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand
| | - Ladda Leelawatwattana
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand
| | - Porntip Prapunpoj
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand.
| |
Collapse
|