1
|
Momotyuk E, Ebrahim N, Shakirova K, Dashinimaev E. Role of the cytoskeleton in cellular reprogramming: effects of biophysical and biochemical factors. Front Mol Biosci 2025; 12:1538806. [PMID: 40123979 PMCID: PMC11926148 DOI: 10.3389/fmolb.2025.1538806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
The cytoskeleton plays a crucial role in regulating cellular behavior, acting as both a structural framework and a mediator of mechanical and biochemical signals that influence cell fate. In the context of cellular reprogramming, modifications to the cytoskeleton can have profound effects on lineage commitment and differentiation efficiency. This review explores the impact of mechanical forces such as substrate stiffness, topography, extracellular fluid viscosity, and cell seeding density on cytoskeletal organization and mechanotransduction pathways, including Rho/ROCK and YAP/TAZ signaling. Additionally, we examine the influence of biochemical agents that modulate cytoskeletal dynamics, such as actin and microtubule polymerization inhibitors, and their effects on stem cell differentiation. By understanding how cytoskeletal remodeling governs cellular identity, this review highlights potential strategies for improving reprogramming efficiency and directing cell fate by manipulating mechanical and biochemical cues.
Collapse
Affiliation(s)
| | | | | | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
2
|
Piskorz WM, Krętowski R, Cechowska-Pasko M. Marizomib Promotes Senescence or Long-Term Apoptosis in Melanoma Cancer Cells. Molecules 2024; 29:5652. [PMID: 39683813 DOI: 10.3390/molecules29235652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Cellular senescence is cell cycle arrest and the inhibition of cell proliferation. New anticancer approaches include the elimination of cancer cells through the induction of senescence followed by senolysis. New prosenescence compounds are still being searched for. Little is known about the ability of proteasome inhibitors to induce senescence in tumor cells, especially in malignant melanoma. The aim of our study was to verify the activity of a natural proteasome inhibitor-marizomib (MZB)-directly after incubation and after its removal to assess its potential to induce senescence or long-term apoptosis in malignant melanoma cell lines (A375 and G361). After 48 h of incubation with MZB, we observed an increased number of SA-β-galactosidase-positive cells, upregulated expression of P21 and P-P53 proteins and an increased number of cells at the subG1 phase (line G361) or at both the subG1 and G2/M phases (line A375). After 96 h from inhibitor removal, the G361 line presented signs of senescence (increased level of SA-β-galactosidase, IL-8, P-P53, G2/M and S phases of cell cycle, decreased lamin B1 and cleaved lamin B1), while the A375 line demonstrated more signs of apoptosis (increased subG1 phase, P-P53, cleaved lamin B1). The gathered findings suggest that MZB resulted in the induction of cellular senescence (line G361) or enhanced apoptosis (line A375) in the melanoma cell lines tested here and could be a promising therapeutic factor in malignant melanoma treatment.
Collapse
Affiliation(s)
- Wiktoria Monika Piskorz
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Białystok, Poland
| | - Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Białystok, Poland
| | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Białystok, Poland
| |
Collapse
|
3
|
Tangavelou K, Bhaskar K. The Mechanistic Link Between Tau-Driven Proteotoxic Stress and Cellular Senescence in Alzheimer's Disease. Int J Mol Sci 2024; 25:12335. [PMID: 39596399 PMCID: PMC11595124 DOI: 10.3390/ijms252212335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In Alzheimer's disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin-proteasome system (UPS)-mediated degradation. However, the impairment of tau degradation in neurons allows tau to be secreted into the extracellular space. Secreted tau can be monomers, oligomers, and paired helical filaments (PHFs), which are seeding competent pathological tau that can be endocytosed/phagocytosed by healthy neurons, microglia, astrocytes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes, often causing proteotoxic stress and eventually triggers senescence. Senescent cells secrete various senescence-associated secretory phenotype (SASP) factors, which trigger cellular atrophy, causing decreased brain volume in human AD. However, the molecular mechanisms of proteotoxic stress and cellular senescence are not entirely understood and are an emerging area of research. Therefore, this comprehensive review summarizes pertinent studies that provided evidence for the sequential tau degradation, failure, and the mechanistic link between tau-driven proteotoxic stress and cellular senescence in AD.
Collapse
Affiliation(s)
- Karthikeyan Tangavelou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
4
|
Lazarchuk P, Nguyen MM, Curca CM, Pavlova MN, Oshima J, Sidorova JM. Werner syndrome RECQ helicase participates in and directs maintenance of the protein complexes of constitutive heterochromatin in proliferating human cells. Aging (Albany NY) 2024; 16:12977-13011. [PMID: 39422615 PMCID: PMC11552638 DOI: 10.18632/aging.206132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Werner syndrome of premature aging is caused by mutations in the WRN RECQ helicase/exonuclease, which functions in DNA replication, repair, transcription, and telomere maintenance. How the loss of WRN accelerates aging is not understood in full. Here we show that WRN is necessary for optimal constitutive heterochromatin levels in proliferating human fibroblasts. Locally, WRN deficiency derepresses SATII pericentromeric satellite repeats but does not reduce replication fork progression on SATII repeats. Globally, WRN loss reduces a subset of protein-protein interactions responsible for the organization of constitutive heterochromatin in the nucleus, namely, the interactions involving Lamin B1 and Lamin B receptor, LBR. Both the mRNA level and subcellular distribution of LBR are affected by WRN deficiency, and unlike the former, the latter phenotype does not require WRN catalytic activities. The phenotypes of heterochromatin disruption seen in WRN-deficient proliferating fibroblasts are also observed in WRN-proficient fibroblasts undergoing replicative or oncogene-induced senescence. WRN interacts with histone deacetylase 2, HDAC2; WRN/HDAC2 association is mediated by heterochromatin protein alpha, HP1α, and WRN complexes with HP1α and HDAC2 are downregulated in senescing cells. The data suggest that the effect of WRN loss on heterochromatin is separable from senescence program, but mimics at least some of the heterochromatin changes associated with it.
Collapse
Affiliation(s)
- Pavlo Lazarchuk
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matthew Manh Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Crina M. Curca
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Parse Biosciences, Seattle, WA 98109, USA
| | - Maria N. Pavlova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Junko Oshima
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Julia M. Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
En A, Takemoto K, Yamakami Y, Nakabayashi K, Fujii M. Upregulated expression of lamin B receptor increases cell proliferation and suppresses genomic instability: implications for cellular immortalization. FEBS J 2024; 291:2155-2171. [PMID: 38462947 DOI: 10.1111/febs.17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/04/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Mammalian somatic cells undergo terminal proliferation arrest after a limited number of cell divisions, a phenomenon termed cellular senescence. However, cells acquire the ability to proliferate infinitely (cellular immortalization) through multiple genetic alterations. Inactivation of tumor suppressor genes such as p53, RB and p16 is important for cellular immortalization, although additional molecular alterations are required for cellular immortalization to occur. Here, we aimed to gain insights into these molecular alterations. Given that cellular immortalization is the escape of cells from cellular senescence, genes that regulate cellular senescence are likely to be involved in cellular immortalization. Because senescent cells show altered heterochromatin organization, we investigated the implications of lamin A/C, lamin B1 and lamin B receptor (LBR), which regulate heterochromatin organization, in cellular immortalization. We employed human immortalized cell lines, KMST-6 and SUSM-1, and found that expression of LBR was upregulated upon cellular immortalization and downregulated upon cellular senescence. In addition, knockdown of LBR induced cellular senescence with altered chromatin configuration. Additionally, enforced expression of LBR increased cell proliferation likely through suppression of genome instability in human primary fibroblasts that expressed the simian virus 40 large T antigen (TAg), which inactivates p53 and RB. Furthermore, expression of TAg or knockdown of p53 led to upregulated LBR expression. These observations suggested that expression of LBR might be upregulated to suppress genome instability in TAg-expressing cells, and, consequently, its upregulated expression assisted the proliferation of TAg-expressing cells (i.e. p53/RB-defective cells). Our findings suggest a crucial role for LBR in the process of cellular immortalization.
Collapse
Affiliation(s)
- Atsuki En
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Kentaro Takemoto
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Yoshimi Yamakami
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, Japan
| |
Collapse
|
6
|
Cao Y, Ruan J, Kang J, Nie X, Lan W, Ruan G, Li J, Zhu Z, Han W, Tang S, Ding C. Extracellular Vesicles in Infrapatellar Fat Pad from Osteoarthritis Patients Impair Cartilage Metabolism and Induce Senescence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303614. [PMID: 38036301 PMCID: PMC10797473 DOI: 10.1002/advs.202303614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Infrapatellar fat pad (IPFP) is closely associated with the development and progression of knee osteoarthritis (OA), but the underlying mechanism remains unclear. Here, it is find that IPFP from OA patients can secret small extracellular vesicles (sEVs) and deliver them into articular chondrocytes. Inhibition the release of endogenous osteoarthritic IPFP-sEVs by GW4869 significantly alleviated IPFP-sEVs-induced cartilage destruction. Functional assays in vitro demonstrated that IPFP-sEVs significantly promoted chondrocyte extracellular matrix (ECM) catabolism and induced cellular senescence. It is further demonstrated that IPFP-sEVs induced ECM degradation in human and mice cartilage explants and aggravated the progression of experimental OA in mice. Mechanistically, highly enriched let-7b-5p and let-7c-5p in IPFP-sEVs are essential to mediate detrimental effects by directly decreasing senescence negative regulator, lamin B receptor (LBR). Notably, intra-articular injection of antagomirs inhibiting let-7b-5p and let-7c-5p in mice increased LBR expression, suppressed chondrocyte senescence and ameliorated the progression of experimental OA model. This study uncovers the function and mechanism of the IPFP-sEVs in the progression of OA. Targeting IPFP-sEVs cargoes of let-7b-5p and let-7c-5p can provide a potential strategy for OA therapy.
Collapse
Affiliation(s)
- Yumei Cao
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Department of Rheumatology and ImmunologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
| | - Jianzhao Ruan
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
| | - Jingliang Kang
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
| | - Xiaoyu Nie
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
| | - Weiren Lan
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
| | - Guangfeng Ruan
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Clinical Research CentreGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Jia Li
- Division of Orthopaedic SurgeryDepartment of OrthopedicsNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Zhaohua Zhu
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
| | - Weiyu Han
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Centre of OrthopedicsZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
| | - Su'an Tang
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Centre of OrthopedicsZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
| | - Changhai Ding
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| |
Collapse
|
7
|
En A, Watanabe K, Ayusawa D, Fujii M. The key role of a basic domain of histone H2B N-terminal tail in the action of 5-bromodeoxyuridine to induce cellular senescence. FEBS J 2023; 290:692-711. [PMID: 35882390 DOI: 10.1111/febs.16584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
5-Bromodeoxyuridine (BrdU), a thymidine analogue, is an interesting reagent that modulates various biological phenomena. BrdU, upon incorporation into DNA, causes destabilized nucleosome positioning which leads to changes in heterochromatin organization and gene expression in cells. We have previously shown that BrdU effectively induces cellular senescence, a phenomenon of irreversible growth arrest in mammalian cells. Identification of the mechanism of action of BrdU would provide a novel insight into the molecular mechanisms of cellular senescence. Here, we showed that a basic domain in the histone H2B N-terminal tail, termed the HBR (histone H2B repression) domain, is involved in the action of BrdU. Notably, deletion of the HBR domain causes destabilized nucleosome positioning and derepression of gene expression, as does BrdU. We also showed that the genes up-regulated by BrdU significantly overlapped with those by deletion of the HBR domain, the result of which suggested that BrdU and deletion of the HBR domain act in a similar way. Furthermore, we showed that decreased HBR domain function induced cellular senescence or facilitated the induction of cellular senescence. These findings indicated that the HBR domain is crucially involved in the action of BrdU, and also suggested that disordered nucleosome organization may be involved in the induction of cellular senescence.
Collapse
Affiliation(s)
- Atsuki En
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Kazuaki Watanabe
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Dai Ayusawa
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, Japan
| |
Collapse
|
8
|
Kha M, Krawczyk K, Choong OK, De Luca F, Altiparmak G, Källberg E, Nilsson H, Leandersson K, Swärd K, Johansson ME. The injury-induced transcription factor SOX9 alters the expression of LBR, HMGA2, and HIPK3 in the human kidney. Am J Physiol Renal Physiol 2023; 324:F75-F90. [PMID: 36454702 DOI: 10.1152/ajprenal.00196.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Induction of SRY box transcription factor 9 (SOX9) has been shown to occur in response to kidney injury in rodents, where SOX9-positive cells proliferate and regenerate the proximal tubules of injured kidneys. Additionally, SOX9-positive cells demonstrate a capacity to differentiate toward other nephron segments. Here, we characterized the role of SOX9 in normal and injured human kidneys. SOX9 expression was found to colocalize with a proportion of so-called scattered tubular cells in the uninjured kidney, a cell population previously shown to be involved in kidney injury and regeneration. Following injury and in areas adjacent to inflammatory cell infiltrates, SOX9-positive cells were increased in number. With the use of primary tubular epithelial cells (PTECs) obtained from human kidney tissue, SOX9 expression was spontaneously induced in culture and further increased by transforming growth factor-β1, whereas it was suppressed by interferon-γ. siRNA-mediated knockdown of SOX9 in PTECs followed by analysis of differential gene expression, immunohistochemical expression, and luciferase promoter assays suggested lamin B receptor (LBR), high mobility group AT-hook 2 (HMGA2), and homeodomain interacting protein kinase 3 (HIPK3) as possible target genes of SOX9. Moreover, a kidney explant model was used to demonstrate that only SOX9-positive cells survive the massive injury associated with kidney ischemia and that the surviving SOX9-positive cells spread and repopulate the tubules. Using a wound healing assay, we also showed that SOX9 positively regulated the migratory capacity of PTECs. These findings shed light on the functional and regulatory aspects of SOX9 activation in the human kidney during injury and regeneration.NEW & NOTEWORTHY Recent studies using murine models have shown that SRY box transcription factor 9 (SOX9) is activated during repair of renal tubular cells. In this study, we showed that SOX9-positive cells represent a proportion of scattered tubular cells found in the uninjured human kidney. Furthermore, we suggest that expression of LBR, HMGA2, and HIPK3 is altered by SOX9 in the kidney tubular epithelium, suggesting the involvement of these gene products in kidney injury and regeneration.
Collapse
Affiliation(s)
- Michelle Kha
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Krzysztof Krawczyk
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Oi Kuan Choong
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francesco De Luca
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gülay Altiparmak
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Källberg
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Helén Nilsson
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin E Johansson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
9
|
Knockdown of Lamin B1 and the Corresponding Lamin B Receptor Leads to Changes in Heterochromatin State and Senescence Induction in Malignant Melanoma. Cells 2022; 11:cells11142154. [PMID: 35883595 PMCID: PMC9321645 DOI: 10.3390/cells11142154] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Modifications in nuclear structures of cells are implicated in several diseases including cancer. They result in changes in nuclear activity, structural dynamics and cell signalling. However, the role of the nuclear lamina and related proteins in malignant melanoma is still unknown. Its molecular characterisation might lead to a deeper understanding and the development of new therapy approaches. In this study, we analysed the functional effects of dysregulated nuclear lamin B1 (LMNB1) and its nuclear receptor (LBR). According to their cellular localisation and function, we revealed that these genes are crucially involved in nuclear processes like chromatin organisation. RNA sequencing and differential gene expression analysis after knockdown of LMNB1 and LBR revealed their implication in important cellular processes driving ER stress leading to senescence and changes in chromatin state, which were also experimentally validated. We determined that melanoma cells need both molecules independently to prevent senescence. Hence, downregulation of both molecules in a BRAFV600E melanocytic senescence model as well as in etoposide-treated melanoma cells indicates both as potential senescence markers in melanoma. Our findings suggest that LMNB1 and LBR influence senescence and affect nuclear processes like chromatin condensation and thus are functionally relevant for melanoma progression.
Collapse
|