1
|
Kalofonou F, Leach DA, Powell SM, Waxman J, Fletcher CE, Bevan CL. Androgen receptor modulatory miR-1271-5p can promote hormone sensitive prostate cancer cell growth. Front Oncol 2024; 14:1440612. [PMID: 39267821 PMCID: PMC11390458 DOI: 10.3389/fonc.2024.1440612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
In most patients with advanced prostate cancer treated with hormonal therapy, androgen independence eventually emerges, leading to death. Androgen receptor signalling remains an important prostate cancer driver, even in the advanced disease stage. MicroRNAs (miRs), non-coding RNAs that regulate gene expression by inhibiting translation and/or promoting degradation of target mRNAs, can act as tumour suppressors or "oncomiRs" and modulate tumour growth. Because of their stability in tissues and in circulation, and their specificity, microRNAs have emerged as potential biomarkers, as well as therapeutic targets in cancer. We identified miR-1271-5p as an androgen receptor modulatory microRNA and we show it can promote hormone sensitive prostate cancer cell growth. Inhibition or overexpression of miR-1271-5p levels affects prostate cancer cell growth, apoptosis and expression of both androgen receptor target genes and other genes that are likely direct targets, dependent on androgen receptor status, and tumour stage. We conclude that miR-1271-5p has the potential to drive progression of hormone-dependent disease and that the use of specific inhibitors of miR-1271-5p may have therapeutic potential in prostate cancer.
Collapse
Affiliation(s)
- Foteini Kalofonou
- Androgen Signalling and Prostate Cancer Laboratory, Imperial Centre of Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Damien A Leach
- Androgen Signalling and Prostate Cancer Laboratory, Imperial Centre of Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Sue M Powell
- Androgen Signalling and Prostate Cancer Laboratory, Imperial Centre of Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Jonathan Waxman
- Androgen Signalling and Prostate Cancer Laboratory, Imperial Centre of Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Claire E Fletcher
- Androgen Signalling and Prostate Cancer Laboratory, Imperial Centre of Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Charlotte L Bevan
- Androgen Signalling and Prostate Cancer Laboratory, Imperial Centre of Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| |
Collapse
|
2
|
Yao Y, Zhou S, Yan Y, Fu K, Xiao S. The tripartite motif-containing 24 is a multifunctional player in human cancer. Cell Biosci 2024; 14:103. [PMID: 39160596 PMCID: PMC11334367 DOI: 10.1186/s13578-024-01289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024] Open
Abstract
Tripartite motif-containing 24 (TRIM24), also known as transcriptional intermediary factor 1α (TIF1α), is the founding member of TIF1 family. Recent evidence indicates that aberrant expression of TRIM24, functions as an oncogene, is associated with poor prognosis across various cancer types. TRIM24 exhibits a multifaceted structure comprising an N-terminal TRIM region with a RING domain, B-box type 1 and type 2 domains, and a coiled-coil region, as well as a C-terminal plant-homeodomain (PHD)-bromodomain. The bromodomain serves as a 'reader' of epigenetic histone marks, regulating chromatin structure and gene expression by linking associated proteins to acetylated nucleosomal targets, thereby controlling transcription of genes. Notably, bromodomains have emerged as compelling targets for cancer therapeutic development. In addition, TRIM24 plays specialized roles as a signal transduction molecule, orchestrating various cellular signaling cascades in cancer cells. Herein, we review the recent advancements in understanding the functions of TRIM24, and demonstrate the research progress in utilizing TRIM24 as a target for cancer therapy.
Collapse
Affiliation(s)
- Yuanbing Yao
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Sheng Zhou
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yue Yan
- Yanbian University Medical School, Yanji, Jilin, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Center MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87# Xiangya Road, Changsha, 410008, Hunan, China.
| | - Shuai Xiao
- The First Affiliated Hospital, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, 69# Chuanshan Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Chen L, Zhou Y, Cheng H, Lu W, Cai M, Jiang K. Circ-SATB2 (hsa_circ_0008928) and miR-150-5p are regulators of TRIM66 in the regulation of NSCLC cell growth and metastasis of NSCLC cells via the ceRNA pathway. J Biochem Mol Toxicol 2024; 38:e23615. [PMID: 38084627 DOI: 10.1002/jbt.23615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Circular RNA (circRNA) was an important modulator and potential molecular target of nonsmall cell lung cancer (NSCLC). CircSATB2 was reported to be upregulated in NSCLC. However, the role and mechanism of circSATB2 in NSCLC progression remain to be illustrated. The RNA and protein expression was detected by quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry assay. Cell counting kit-8, cell colony formation, and 5-ethynyl-2'-deoxyuridine assays were applied to assess cell growth. The migrated and invaded cells were examined by transwell assay. Flow cytometry was performed to measure apoptotic cells. The interaction among circSATB2, microRNA-150-5p (miR-150-5p), and tripartite motif-containing protein 66 (TRIM66) was identified by dual-luciferase reporter assay and RNA immunoprecipitation assay. An in vivo experiment was conducted to investigate the effect of circSATB2 on tumor growth. CircSATB2 expression was highly expressed in NSCLC tissues and cell lines. CircSATB2 and TRIM66 silencing both suppressed NSCLC cell growth, migration, and invasion whereas promoted NSCLC cell apoptosis. CircSATB2 acted as a molecular sponge for miR-150-5p, and miR-150-5p interacted with the 3' untranslated region (3'UTR) of TRIM66. Moreover, circSATB2 knockdown-induced effects were partly reversed by TRIM66 overexpression in NSCLC cells. Besides, cirSATB2 expression was negatively correlated with miR-150-5p level and positively correlated with TRIM66 level in NSCLC tumor tissues. CircSATB2 knockdown blocked xenograft tumor growth in vivo. In summary, this study verified that circSATB2 stimulated NSCLC cell malignant behaviors by miR-150-5p/TRIM66 pathway, providing a possible circRNA-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Liangji Chen
- Medical Clinical Laboratory, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Yuting Zhou
- Medical Clinical Laboratory, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Hongbing Cheng
- Thoracic Surgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Wenjing Lu
- Department of Oncology, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Mengyang Cai
- Medical Clinical Laboratory, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Kaifeng Jiang
- Clinical Laboratory, The Central Hospital of Yongzhou, Yongzhou City, Hunan Province, China
| |
Collapse
|
4
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Gombos G, Németh N, Pös O, Styk J, Buglyó G, Szemes T, Danihel L, Nagy B, Balogh I, Soltész B. New Possible Ways to Use Exosomes in Diagnostics and Therapy via JAK/STAT Pathways. Pharmaceutics 2023; 15:1904. [PMID: 37514090 PMCID: PMC10386711 DOI: 10.3390/pharmaceutics15071904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomes have the potential to be the future of personalized diagnostics and therapy. They are nano-sized particles between 30 and 100 nm flowing in the extracellular milieu, where they mediate cell-cell communication and participate in immune system regulation. Tumor-derived exosomes (TDEs) secreted from different types of cancer cells are the key regulators of the tumor microenvironment. With their immune suppressive cargo, TDEs prevent the antitumor immune response, leading to reduced effectiveness of cancer treatment by promoting a pro-tumorigenic microenvironment. Involved signaling pathways take part in the regulation of tumor proliferation, differentiation, apoptosis, and angiogenesis. Signal transducers and activators of transcription factors (STATs) and Janus kinase (JAK) signaling pathways are crucial in malignancies and autoimmune diseases alike, and their potential to be manipulated is currently the focus of interest. In this review, we aim to discuss exosomes, TDEs, and the JAK/STAT pathways, along with mediators like interleukins, tripartite motif proteins, and interferons.
Collapse
Affiliation(s)
- Gréta Gombos
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Nikolett Németh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Jakub Styk
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 01 Bratislava, Slovakia
| | - Ludovit Danihel
- 3rd Surgical Clinic, Faculty of Medicine, Comenius University and Merciful Brothers University Hospital, 811 08 Bratislava, Slovakia
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
6
|
Czerwinska P, Mackiewicz AA. Bromodomain (BrD) Family Members as Regulators of Cancer Stemness-A Comprehensive Review. Int J Mol Sci 2023; 24:995. [PMID: 36674511 PMCID: PMC9861003 DOI: 10.3390/ijms24020995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic mechanisms involving DNA methylation and chromatin modifications have emerged as critical facilitators of cancer heterogeneity, substantially affecting cancer development and progression, modulating cell phenotypes, and enhancing or inhibiting cancer cell malignant properties. Not surprisingly, considering the importance of epigenetic regulators in normal stem cell maintenance, many chromatin-related proteins are essential to maintaining the cancer stem cell (CSC)-like state. With increased tumor-initiating capacities and self-renewal potential, CSCs promote tumor growth, provide therapy resistance, spread tumors, and facilitate tumor relapse after treatment. In this review, we characterized the epigenetic mechanisms that regulate the acquisition and maintenance of cancer stemness concerning selected epigenetic factors belonging to the Bromodomain (BrD) family of proteins. An increasing number of BrD proteins reinforce cancer stemness, supporting the maintenance of the cancer stem cell population in vitro and in vivo via the utilization of distinct mechanisms. As bromodomain possesses high druggable potential, specific BrD proteins might become novel therapeutic targets in cancers exhibiting de-differentiated tumor characteristics.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
7
|
Ye H, Wang RY, Yu XZ, Wu YK, Yang BW, Ao MY, Xi MR, Hou MM. Exosomal circNFIX promotes angiogenesis in ovarian cancer via miR-518a-3p/TRIM44 axis. Kaohsiung J Med Sci 2023; 39:26-39. [PMID: 36448712 DOI: 10.1002/kjm2.12615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
Ovarian cancer (OC) is a gynecological cancer with high mortality. OC-derived exosomal circRNAs can regulate angiogenesis. This study aims to explore the role and mechanism of exosomal circRNA nuclear factor I X (CircNFIX) derived from OC cells in angiogenesis. Quantitative real-time polymerase chain reaction was employed to evaluate the levels of circNFIX, miR-518a-3p, and tripartite motif protein 44 (TRIM44) in OC and adjacent tissues. Exosomes from the ovarian surface epithelial cell (HOSEpiC) and OC cells (SKOV3 or OVCAR3) were isolated by differential centrifugation. Exosomes were cocultured with the human umbilical vein endothelial cells (HUVECs). The angiogenesis capacity was analyzed by Tube formation assay. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and Transwell assays were used to determine the cell viability and migration ability. The dual-luciferase report, RNA immunoprecipitation (RIP), and RNA pull-down assays were applied to validate the gene's interaction. CircNFIX and TRIM44 expression were higher and miR-518a-3p was lower in OC tissues than in the adjacent tissues. Upregulated circNFIX and TRIM44 were significantly correlated with the tumor size and International Federation of Gynecology and Obstetrics (FIGO) stage of OC patients. HUVECs treated OC-derived exosomes had higher proliferation, migration, and angiogenesis capacities than the control group. While OC-derived exosomal circNFIX silencing restrained HUVECs' proliferation, migration, and angiogenesis, compared with the OC-derived exosomes group. OC-derived exosomal circNFIX positively regulated TRIM44 expression by targeting miR-518a-3p in HUVECs. OC-derived exosomal circNFIX promoted angiogenesis by regulating the Janus-activated kinase/signal transducer and activator of transcription 1 (JAK/STAT1) pathway via miR-518a-3p/TRIM44 axis in HUVECs.
Collapse
Affiliation(s)
- Hui Ye
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Rui-Yu Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Xiu-Zhang Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yu-Ke Wu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Bo-Wen Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Meng-Yin Ao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ming-Rong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Min-Min Hou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Circ_0051079 silencing inhibits the malignant phenotypes of osteosarcoma cells by the TRIM66/Wnt/β-catenin pathway in a miR-625-5p-dependent manner. J Bone Oncol 2022; 35:100436. [PMID: 35733786 PMCID: PMC9207668 DOI: 10.1016/j.jbo.2022.100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Circ_0051079 was significantly increased in OS tissues and cells. Circ_0051079 knockdown inhibited OS cell malignant progression. Circ_0051079 regulated TRIM66 expression through miR-625-5p. Circ_0051079 mediated the Wnt/β-catenin pathway by regulating TRIM66.
Background Methods Results Conclusion
Collapse
|
9
|
Chen W, Zhang Y, Fang Z, Qi W, Xu Y. TRIM66 hastens the malignant progression of non-small cell lung cancer via modulating MMP9-mediated TGF-β/SMAD pathway. Cytokine 2022; 153:155831. [PMID: 35301175 DOI: 10.1016/j.cyto.2022.155831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate regulatory function and underlying mechanism of TRIM66 in non-small cell lung cancer (NSCLC). METHODS TRIM66 and MMP9 expression in NSCLC cells and tissues was assayed via qRT-PCR and western blot. CCK-8, colony formation, Transwell and flow cytometry assays were conducted to measure cell functional alternations in NSCLC. Western blot was employed to measure expression as well as phosphorylation levels of epithelial-mesenchymal transition-(EMT) and TGF-β/SMAD pathways-related proteins. Co-immunoprecipitation (Co-IP) assay was done to probe interaction between TRIM66 and MMP9. Xenograft in vivo experiment and tumor metastasis model in nude mice were utilized to investigate effects of TRIM66 on tumor growth of NSCLC. RESULTS TRIM66 and MMP9 were conspicuously highly expressed in NSCLC cells and tissues. High TRIM66 level was markedly correlated with metastasis. Silencing TRIM66 prominently repressed the proliferation, migration and invasion of transfected cells, while inducing cell apoptosis. Whereas forced expression of TRIM66 exerted the opposite effect. The aberrant expression of TRIM66 modulated EMT pathway. TRIM66 also regulated MMP9 expression, and the interaction between them was validated by Co-IP assay. Overexpression of MMP9 could activate TGF-β/SMAD pathway. Rescue experiments manifested that si-MMP9 or SB431542 could partially reverse phenotypes induced by TRIM66. In vivo experiments revealed that silencing TRIM66 could hamper NSCLC tumor growth and metastasis. CONCLUSION TRIM66 and MMP9 were up-regulated in NSCLC. TRIM66 facilitated the malignant progression of NSCLC through modulating MMP9-mediated TGF-β/SMAD pathway.
Collapse
Affiliation(s)
- Wenyu Chen
- Department of Respiratory, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Ye Zhang
- Department of General Practice, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Zhixian Fang
- Department of Respiratory, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Weibo Qi
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Yufen Xu
- Department of Oncology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China.
| |
Collapse
|
10
|
Cao H, Wang D, Sun P, Chen L, Feng Y, Gao R. Zhoushi Qi Ling decoction represses docetaxel resistance and glycolysis of castration-resistant prostate cancer via regulation of SNHG10/miR-1271-5p/TRIM66 axis. Aging (Albany NY) 2021; 13:23096-23107. [PMID: 34613933 PMCID: PMC8544336 DOI: 10.18632/aging.203602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 01/26/2023]
Abstract
Docetaxel resistance developed in half of castration-resistant prostate cancer (CRPC) patients hinders its long-term clinical application. The current study was designed to investigate the effects of Chinese medicine Zhoushi Qi Ling decoction on the docetaxel resistance of prostate cancer as well as elucidate the underlying molecular mechanism. In our study, Qi Ling significantly decreased viability and colony formation as well as increased apoptosis of docetaxel-resistant (DR) CRPC cells. Qi Ling-treated DR cells exhibited decreased glucose consumption, lactate release and pyruvate production. Moreover, lncRNA SNHG10 was upregulated in DR tissues of CRPC patients and was negatively correlated with the progression-free survival. Bioinformatics analysis indicated miR-1271-5p as the associated miRNA possibly binding with SNHG10. miR-1271-5p up-regulation dramatically decreased the luciferase activity of SNHG10 in DR cells. SNHG10 knockdown sharply increased the expression of miR1271-5p in DR cells. Targetscan predicted TRIM66 as one of the downstream targets of miR-1271-5p. miR-1271-5p up-regulation drastically reduced luciferase activity as well as TRIM66 expression in DR cells. Also, the knockdown of SNHG10 remarkably suppressed the expression of TRIM66 in DR cells. Additionally, Qi Ling treatment reduced SNHG10 and TRIM66, while increased miR1271-5p, in DR cells. In summary, Qi Ling inhibited docetaxel resistance and glycolysis of CRPC possibly via SNHG10/miR-1271-5p/TRIM66 pathway.
Collapse
Affiliation(s)
- Hongwen Cao
- Surgical Department I, Urology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Dan Wang
- Surgical Department I, Urology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Peng Sun
- Surgical Department I, Urology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lei Chen
- Surgical Department I, Urology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yigeng Feng
- Surgical Department I, Urology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Renjie Gao
- Surgical Department I, Urology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
11
|
Ebersbach C, Beier AMK, Thomas C, Erb HHH. Impact of STAT Proteins in Tumor Progress and Therapy Resistance in Advanced and Metastasized Prostate Cancer. Cancers (Basel) 2021; 13:4854. [PMID: 34638338 PMCID: PMC8508518 DOI: 10.3390/cancers13194854] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Signal transducers and activators of transcription (STATs) are a family of transcription factors involved in several biological processes such as immune response, cell survival, and cell growth. However, they have also been implicated in the development and progression of several cancers, including prostate cancer (PCa). Although the members of the STAT protein family are structurally similar, they convey different functions in PCa. STAT1, STAT3, and STAT5 are associated with therapy resistance. STAT1 and STAT3 are involved in docetaxel resistance, while STAT3 and STAT5 are involved in antiandrogen resistance. Expression of STAT3 and STAT5 is increased in PCa metastases, and together with STAT6, they play a crucial role in PCa metastasis. Further, expression of STAT3, STAT5, and STAT6 was elevated in advanced and high-grade PCa. STAT2 and STAT4 are currently less researched in PCa. Since STATs are widely involved in PCa, they serve as potential therapeutic targets. Several inhibitors interfering with STATs signaling have been tested unsuccessfully in PCa clinical trials. This review focuses on the respective roles of the STAT family members in PCa, especially in metastatic disease and provides an overview of STAT-inhibitors evaluated in clinical trials.
Collapse
Affiliation(s)
- Celina Ebersbach
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alicia-Marie K. Beier
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
| | - Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
| |
Collapse
|
12
|
Offermann A, Kang D, Watermann C, Weingart A, Hupe MC, Saraji A, Stegmann-Frehse J, Kruper R, Schüle R, Pantel K, Taubert H, Duensing S, Culig Z, Aigner A, Klapper W, Jonigk D, Philipp Kühnel M, Merseburger AS, Kirfel J, Sailer V, Perner S. Manuscript Title: Analysis of tripartite motif (TRIM) family gene expression in prostate cancer bone metastases. Carcinogenesis 2021; 42:1475-1484. [PMID: 34487169 DOI: 10.1093/carcin/bgab083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 12/27/2022] Open
Abstract
Tripartite motif (TRIM) family proteins are post-translational protein modifiers with E3-ubiquitin ligase activity, thereby involved in various biological processes. The molecular mechanisms driving prostate cancer (PCa) bone metastasis (BM) are incompletely understood, and targetable genetic alterations are lacking in the majority of cases. Therefore, we aimed to explore the expression and potential functional relevance of 71 TRIM members in bone metastatic PCa. We performed transcriptome analysis of all human TRIM family members and 770 cancer-related genes in 29 localized PCa and 30 PCa BM using Nanostring. KEGG, STRING and Ubibrowser were used for further bioinformatic gene correlation and pathway enrichment analyses. Compared to localized tumors, six TRIMs are under-expressed while nine TRIMs are over-expressed in BM. The differentially expressed TRIM proteins are linked to TNF-, TGFβ-, PI3K/AKT- and HIF-1-signaling, and to features such as proteoglycans, platelet activation, adhesion and ECM-interaction based on correlation to cancer-related genes. The identification of TRIM-specific E3-ligase-substrates revealed insight into functional connections to oncogenes, tumor suppressors and cancer-related pathways including androgen receptor- and TGFβ signaling, cell cycle regulation and splicing. In summary, this is the first study that comprehensively and systematically characterizes the expression of all TRIM members in PCa BM. Our results describe post-translational protein modification as an important regulatory mechanism of oncogenes, tumor suppressors, and pathway molecules in PCa progression. Therefore, this study may provide evidence for novel therapeutic targets, in particular for the treatment or prevention of BM.
Collapse
Affiliation(s)
- Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Duan Kang
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Christian Watermann
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Anika Weingart
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Marie C Hupe
- Department of Urology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Alireza Saraji
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Janine Stegmann-Frehse
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | | | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Klaus Pantel
- Institute for Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helge Taubert
- Department of Urology and Paediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, Germany
| | - Wolfram Klapper
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
| | - Mark Philipp Kühnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.,Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
13
|
Song Y, Meng L, Yu J, Cao Z, Sun J, Zhao H. TRIM66 Overexpression Promotes Glioma Progression and Regulates Glucose Uptake Through cMyc/GLUT3 Signaling. Cancer Manag Res 2021; 13:5187-5201. [PMID: 34234562 PMCID: PMC8256720 DOI: 10.2147/cmar.s293728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Tripartite motif 66 (TRIM66) is reported to be closely associated with human cancers. However, the roles of TRIM66 in glioma remain unclear. The present study aimed to investigate the clinical significance and biological roles of TRIM66 in human glioma. METHODS TRIM66 expression in glioma tissues was examined by immunohistochemistry. TRIM66 overexpression and siRNA knockdown were performed in glioblastoma cell lines. CCK8, colony formation assay, transwell assay, Annexin V and JC1 staining, glucose uptake assay, and Western blotting were used to explore the biological roles and potential underlying mechanisms of TRIM66 in glioma progression. RESULTS Our results showed that TRIM66 was overexpressed in 52/95 glioma cases. The rates of TRIM66 overexpression in Grade I, Grade II, Grade III, and Grade IV gliomas were 16.6%, 41.3%, 58.6%, and 70.9%, respectively. Oncomine data showed that TRIM66 was upregulated in glioblastoma and oligodendroglioma compared with normal brain tissues. TRIM66 expression was higher in glioblastoma cell lines compared with normal SVG p12 glial cell line. TRIM66 promoted in vitro and in vivo proliferation, invasion, and inhibited temozolomide (TMZ)-induced apoptosis. Notably, TRIM66 increased glucose metabolism by upregulating glucose uptake, glucose consumption, and ATP production. Western blotting showed that TRIM66 positively regulated cMyc and GLUT3. Depletion of cMyc by siRNA abolished the effect of TRIM66 on GLUT3. Chromatin immunoprecipitation (ChIP) assay showed that cMyc could bind to the promoter regions of GLUT3 in glioblastoma cells. CONCLUSION TRIM66 was upregulated in human gliomas, where it promoted cell growth and chemoresistance. Our data also identified novel roles of TRIM66 in glioma progression. TRIM66 upregulates glucose uptake and mitochondrial function through the cMyc/GLUT3 signaling, which makes it a potential therapeutic target.
Collapse
Affiliation(s)
- Yuequn Song
- Department of Neurosurgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Lifang Meng
- Department of Scientific Research, China Medical University, Shenyang, People’s Republic of China
| | - Jian Yu
- Department of Neurosurgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Zhi Cao
- Department of Neurosurgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Jizhou Sun
- Department of Neurosurgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Hongyu Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
14
|
Pauletto E, Eickhoff N, Padrão NA, Blattner C, Zwart W. TRIMming Down Hormone-Driven Cancers: The Biological Impact of TRIM Proteins on Tumor Development, Progression and Prognostication. Cells 2021; 10:1517. [PMID: 34208621 PMCID: PMC8234875 DOI: 10.3390/cells10061517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
The tripartite motif (TRIM) protein family is attracting increasing interest in oncology. As a protein family based on structure rather than function, a plethora of biological activities are described for TRIM proteins, which are implicated in multiple diseases including cancer. With hormone-driven cancers being among the leading causes of cancer-related death, TRIM proteins have been described to portrait tumor suppressive or oncogenic activities in these tumor types. This review describes the biological impact of TRIM proteins in relation to hormone receptor biology, as well as hormone-independent mechanisms that contribute to tumor cell biology in prostate, breast, ovarian and endometrial cancer. Furthermore, we point out common functions of TRIM proteins throughout the group of hormone-driven cancers. An improved understanding of the biological impact of TRIM proteins in cancer may pave the way for improved prognostication and novel therapeutics, ultimately improving cancer care for patients with hormone-driven cancers.
Collapse
Affiliation(s)
- Eleonora Pauletto
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology, PO-Box 3640, 76021 Karlsruhe, Germany;
| | - Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| | - Nuno A. Padrão
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| | - Christine Blattner
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology, PO-Box 3640, 76021 Karlsruhe, Germany;
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| |
Collapse
|
15
|
Ubiquitination, Biotech Startups, and the Future of TRIM Family Proteins: A TRIM-Endous Opportunity. Cells 2021; 10:cells10051015. [PMID: 33923045 PMCID: PMC8146955 DOI: 10.3390/cells10051015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Ubiquitination is a post-translational modification that has pivotal roles in protein degradation and diversified cellular processes, and for more than two decades it has been a subject of interest in the biotech or biopharmaceutical industry. Tripartite motif (TRIM) family proteins are known to have proven E3 ubiquitin ligase activities and are involved in a multitude of cellular and physiological events and pathophysiological conditions ranging from cancers to rare genetic disorders. Although in recent years many kinds of E3 ubiquitin ligases have emerged as the preferred choices of big pharma and biotech startups in the context of protein degradation and disease biology, from a surface overview it appears that TRIM E3 ubiquitin ligases are not very well recognized yet in the realm of drug discovery. This article will review some of the blockbuster scientific discoveries and technological innovations from the world of ubiquitination and E3 ubiquitin ligases that have impacted the biopharma community, from biotech colossuses to startups, and will attempt to evaluate the future of TRIM family proteins in the province of E3 ubiquitin ligase-based drug discovery.
Collapse
|
16
|
The Association between TIF1 Family Members and Cancer Stemness in Solid Tumors. Cancers (Basel) 2021; 13:cancers13071528. [PMID: 33810347 PMCID: PMC8061774 DOI: 10.3390/cancers13071528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Stem cell-associated molecular features of solid tumors, collectively known as cancer stemness, are of great importance in the development, progression, and reoccurrence of cancer. Transcriptional and epigenetic dysregulation is significantly associated with cancer stemness. Here, we investigated the association between the Transcriptional Intermediary Factor 1 (TIF1) family members and cancer stemness in solid tumors. We aimed to evaluate the potential value of TIF1 members in predicting a stem-like cancer phenotype. Our results indicate that only TIF1β (also known as Tripartite Motif protein 28, TRIM28) high expression is consequently associated with a “stemness high” phenotype, regardless of the tumor type, resulting in a worse prognosis for cancer patients. The oncogenic signature of TRIM28HIGH tumors significantly reflects the enrichment of “stemness high” cancers with targets for c-Myc (MYC Proto-Oncogene). TRIM28-associated gene expression profiles are also robustly enriched with stemness markers. Our results demonstrate that the association between high TRIM28 expression and an enriched cancer stem cell-like phenotype is a common phenomenon across solid tumors. Abstract Cancer progression entails a gradual loss of a differentiated phenotype in parallel with the acquisition of stem cell-like features. Cancer de-differentiation and the acquisition of stemness features are mediated by the transcriptional and epigenetic dysregulation of cancer cells. Here, using publicly available data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and harnessing several bioinformatic tools, we characterized the association between Transcriptional Intermediary Factor 1 (TIF1) family members and cancer stemness in 27 distinct types of solid tumors. We aimed to define the prognostic value for TIF1 members in predicting a stem cell-like cancer phenotype and patient outcome. Our results demonstrate that high expression of only one member of the TIF1 family, namely TIF1β (also known as Tripartite Motif protein 28, TRIM28) is consequently associated with enriched cancer stemness across the tested solid tumor types, resulting in a worse prognosis for cancer patients. TRIM28 is highly expressed in higher grade tumors that exhibit stem cell-like traits. In contrast to other TIF1 members, only TIF1β/TRIM28-associated gene expression profiles were robustly enriched with stemness markers regardless of the tumor type. Our work demonstrates that TIF1 family members exhibit distinct expression patterns in stem cell-like tumors, despite their structural and functional similarity. Among other TIF1 members, only TRIM28 might serve as a marker of cancer stemness features.
Collapse
|
17
|
Ashrafizadeh M, Hushmandi K, Rahmani Moghadam E, Zarrin V, Hosseinzadeh Kashani S, Bokaie S, Najafi M, Tavakol S, Mohammadinejad R, Nabavi N, Hsieh CL, Zarepour A, Zare EN, Zarrabi A, Makvandi P. Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer. Bioengineering (Basel) 2020; 7:E91. [PMID: 32784981 PMCID: PMC7552721 DOI: 10.3390/bioengineering7030091] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) accounts for a high number of deaths in males with no available curative treatments. Patients with PCa are commonly diagnosed in advanced stages due to the lack of symptoms in the early stages. Recently, the research focus was directed toward gene editing in cancer therapy. Small interfering RNA (siRNA) intervention is considered as a powerful tool for gene silencing (knockdown), enabling the suppression of oncogene factors in cancer. This strategy is applied to the treatment of various cancers including PCa. The siRNA can inhibit proliferation and invasion of PCa cells and is able to promote the anti-tumor activity of chemotherapeutic agents. However, the off-target effects of siRNA therapy remarkably reduce its efficacy in PCa therapy. To date, various carriers were designed to improve the delivery of siRNA and, among them, nanoparticles are of importance. Nanoparticles enable the targeted delivery of siRNAs and enhance their potential in the downregulation of target genes of interest. Additionally, nanoparticles can provide a platform for the co-delivery of siRNAs and anti-tumor drugs, resulting in decreased growth and migration of PCa cells. The efficacy, specificity, and delivery of siRNAs are comprehensively discussed in this review to direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and perhaps other cancer types.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | | | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kermaan 55425147, Iran;
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan;
| | - Atefeh Zarepour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran;
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
| |
Collapse
|
18
|
TIF1 Proteins in Genome Stability and Cancer. Cancers (Basel) 2020; 12:cancers12082094. [PMID: 32731534 PMCID: PMC7463590 DOI: 10.3390/cancers12082094] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is a hallmark of cancer cells which results in excessive DNA damage. To counteract this, cells have evolved a tightly regulated DNA damage response (DDR) to rapidly sense DNA damage and promote its repair whilst halting cell cycle progression. The DDR functions predominantly within the context of chromatin and requires the action of chromatin-binding proteins to coordinate the appropriate response. TRIM24, TRIM28, TRIM33 and TRIM66 make up the transcriptional intermediary factor 1 (TIF1) family of chromatin-binding proteins, a subfamily of the large tripartite motif (TRIM) family of E3 ligases. All four TIF1 proteins are aberrantly expressed across numerous cancer types, and increasing evidence suggests that TIF1 family members can function to maintain genome stability by mediating chromatin-based responses to DNA damage. This review provides an overview of the TIF1 family in cancer, focusing on their roles in DNA repair, chromatin regulation and cell cycle regulation.
Collapse
|