1
|
Huang P, Chen G, Zhu Z, Wang S, Chen Z, Chai Y, Li W, Ou G. Phosphorylation-dependent regional motility of the ciliary kinesin OSM-3. J Cell Biol 2025; 224:e202407152. [PMID: 40272473 DOI: 10.1083/jcb.202407152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/29/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Kinesin motor proteins, vital for intracellular microtubule-based transport, display region-specific motility within cells, a phenomenon that remains molecularly enigmatic. This study focuses on the localized activation of OSM-3, an intraflagellar transport kinesin crucial for the assembly of ciliary distal segments in Caenorhabditis elegans sensory neurons. Fluorescence lifetime imaging microscopy unveiled an extended, active conformation of OSM-3 in the ciliary base and middle segments, where OSM-3 is conveyed as cargo by kinesin-II. We demonstrate that NEKL-3, a never in mitosis kinase-like protein, directly phosphorylates the motor domain of OSM-3, inhibiting its in vitro activity. NEKL-3 and NEKL-4, localized at the ciliary base, function redundantly to restrict OSM-3 activation. Elevated levels of protein phosphatase 2A at the ciliary transition zone or middle segments triggered premature OSM-3 motility, while its deficiency resulted in reduced OSM-3 activity and shorter cilia. These findings elucidate a phosphorylation-mediated mechanism governing the regional motility of kinesins.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University , Beijing, China
- McGovern Institute for Brain Research, Tsinghua University , Beijing, China
- State Key Laboratory for Membrane Biology , Beijing, China
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Guanghan Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University , Beijing, China
- McGovern Institute for Brain Research, Tsinghua University , Beijing, China
- State Key Laboratory for Membrane Biology , Beijing, China
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Zhiwen Zhu
- Institute of Molecular Enzymology, Soochow University , Suzhou, China
| | - Shimin Wang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University , Beijing, China
- McGovern Institute for Brain Research, Tsinghua University , Beijing, China
- State Key Laboratory for Membrane Biology , Beijing, China
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Zhe Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University , Beijing, China
- McGovern Institute for Brain Research, Tsinghua University , Beijing, China
- State Key Laboratory for Membrane Biology , Beijing, China
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University , Beijing, China
- McGovern Institute for Brain Research, Tsinghua University , Beijing, China
- State Key Laboratory for Membrane Biology , Beijing, China
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Wei Li
- School of Basic Medical Sciences, Tsinghua University , Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University , Beijing, China
- McGovern Institute for Brain Research, Tsinghua University , Beijing, China
- State Key Laboratory for Membrane Biology , Beijing, China
- School of Life Sciences, Tsinghua University , Beijing, China
| |
Collapse
|
2
|
Xie C, Chen G, Li M, Huang P, Chen Z, Lei K, Li D, Wang Y, Cleetus A, Mohamed MA, Sonar P, Feng W, Ökten Z, Ou G. Neurons dispose of hyperactive kinesin into glial cells for clearance. EMBO J 2024; 43:2606-2635. [PMID: 38806659 PMCID: PMC11217292 DOI: 10.1038/s44318-024-00118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Microtubule-based kinesin motor proteins are crucial for intracellular transport, but their hyperactivation can be detrimental for cellular functions. This study investigated the impact of a constitutively active ciliary kinesin mutant, OSM-3CA, on sensory cilia in C. elegans. Surprisingly, we found that OSM-3CA was absent from cilia but underwent disposal through membrane abscission at the tips of aberrant neurites. Neighboring glial cells engulf and eliminate the released OSM-3CA, a process that depends on the engulfment receptor CED-1. Through genetic suppressor screens, we identified intragenic mutations in the OSM-3CA motor domain and mutations inhibiting the ciliary kinase DYF-5, both of which restored normal cilia in OSM-3CA-expressing animals. We showed that conformational changes in OSM-3CA prevent its entry into cilia, and OSM-3CA disposal requires its hyperactivity. Finally, we provide evidence that neurons also dispose of hyperactive kinesin-1 resulting from a clinic variant associated with amyotrophic lateral sclerosis, suggesting a widespread mechanism for regulating hyperactive kinesins.
Collapse
Affiliation(s)
- Chao Xie
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Guanghan Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ming Li
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Peng Huang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhe Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Kexin Lei
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuhe Wang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- State Key Laboratory for Membrane Biology, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Augustine Cleetus
- Physik Department E22, Technische Universitat Munchen, James-Franck-Strasse, Garching, 85748, Germany
| | - Mohamed Aa Mohamed
- Physik Department E22, Technische Universitat Munchen, James-Franck-Strasse, Garching, 85748, Germany
| | - Punam Sonar
- Physik Department E22, Technische Universitat Munchen, James-Franck-Strasse, Garching, 85748, Germany
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zeynep Ökten
- Physik Department E22, Technische Universitat Munchen, James-Franck-Strasse, Garching, 85748, Germany
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- State Key Laboratory for Membrane Biology, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Budaitis BG, Badieyan S, Yue Y, Blasius TL, Reinemann DN, Lang MJ, Cianfrocco MA, Verhey KJ. A kinesin-1 variant reveals motor-induced microtubule damage in cells. Curr Biol 2022; 32:2416-2429.e6. [PMID: 35504282 PMCID: PMC9993403 DOI: 10.1016/j.cub.2022.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Kinesins drive the transport of cellular cargoes as they walk along microtubule tracks; however, recent work has suggested that the physical act of kinesins walking along microtubules can stress the microtubule lattice. Here, we describe a kinesin-1 KIF5C mutant with an increased ability to generate damage sites in the microtubule lattice as compared with the wild-type motor. The expression of the mutant motor in cultured cells resulted in microtubule breakage and fragmentation, suggesting that kinesin-1 variants with increased damage activity would have been selected against during evolution. The increased ability to damage microtubules is not due to the enhanced motility properties of the mutant motor, as the expression of the kinesin-3 motor KIF1A, which has similar single-motor motility properties, also caused increased microtubule pausing, bending, and buckling but not breakage. In cells, motor-induced microtubule breakage could not be prevented by increased α-tubulin K40 acetylation, a post-translational modification known to increase microtubule flexibility. In vitro, lattice damage induced by wild-type KIF5C was repaired by soluble tubulin and resulted in increased rescues and overall microtubule growth, whereas lattice damage induced by the KIF5C mutant resulted in larger repair sites that made the microtubule vulnerable to breakage and fragmentation when under mechanical stress. These results demonstrate that kinesin-1 motility causes defects in and damage to the microtubule lattice in cells. While cells have the capacity to repair lattice damage, conditions that exceed this capacity result in microtubule breakage and fragmentation and may contribute to human disease.
Collapse
Affiliation(s)
- Breane G Budaitis
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Somayesadat Badieyan
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Yue
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - T Lynne Blasius
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana N Reinemann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37240, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37240, USA
| | - Michael A Cianfrocco
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|