1
|
Sun X, Wang Y, Yang X, Xiang X, Zou L, Liu X, Luo G, Han Q. Profilin Pfy1 is critical for cell wall integrity and virulence in Candida albicans. Microbiol Spectr 2025; 13:e0259324. [PMID: 39992147 PMCID: PMC11960436 DOI: 10.1128/spectrum.02593-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
Profilin is a small actin-binding protein that plays an important role in actin polymerization. However, its functions in Candida albicans, the most prevalent fungal pathogen, remain unclear. Here, we report that profilin plays a crucial role in C. albicans morphogenesis and virulence. Deletion of profilin results in abnormal morphogenesis and impaired hyphal development. Furthermore, pfy1Δ/Δ is hypersensitive to cell wall stress and displays thicker cell wall than wild-type cells, indicative of a critical function of Pfy1 in cell wall integrity. In addition, our findings demonstrate that profilin is required for the virulence of C. albicans in a murine model of systemic infection. In conclusion, our work provides a promising target for developing antifungal drugs.IMPORTANCEOur research revealed Pfy1 is not only involved in hyphal development but also essential for pseudohyphal formation in response to DNA damage agents methyl methanesulfonate (MMS) and H2O2. The disruption of PFY1 resulted in striking morphological defects in both yeast and hyphal forms. Further investigation suggested that profilin plays a role in polarized growth of Candida albicans via binding with Act1, and contributes to cell wall remodeling. Both hyphal growth and cell wall integrity are the important virulence factors of C. albicans. Thus, pfy1Δ/Δ strains significantly reduced mortality rates in mice. These findings suggested that profilin could serve as a target for developing new antifungal drugs possibly for use in combination therapies with caspofungin, for treating invasive candidiasis.
Collapse
Affiliation(s)
- Xun Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- The Third Clinical Medical College of the Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, Hubei, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Yueqing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Xiaomin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xi Xiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Gang Luo
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guizhou, China
| | - Qi Han
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Inoue R, Oda T, Nakagawa H, Tominaga T, Ikegami T, Konuma T, Iwase H, Kawakita Y, Sato M, Sugiyama M. Revealing an origin of temperature-dependent structural change in intrinsically disordered proteins. Biophys J 2025; 124:540-548. [PMID: 39719827 PMCID: PMC11866975 DOI: 10.1016/j.bpj.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) show structural changes stimulated by changes in external conditions. This study aims to reveal the temperature dependence of the structure and the dynamics of the intrinsically disordered region of the helicase-associated endonuclease for fork-structured DNA, one of the typical IDPs, using an integrative approach. Small-angle X-ray scattering (SAXS) and circular dichroism (CD) studies revealed that the radius of gyration and ellipticity at 222 nm remained constant up to 313-323 K, followed by a decline above this temperature range. NMR studies revealed the absence of a promotion of the α helix. As a result, SAXS, CD, and NMR data strongly suggest that these temperature-dependent structural changes were primarily due to a reduction in the content of the polyproline II (PPII) helix. Moreover, quasielastic neutron scattering studies revealed a slight change in the activation energy in a similar temperature range. Considering the concept of glass transition, it is posited that dynamical cooperativity between the PPII helix and water may play a significant role in these structural changes. The findings suggest that internal dynamics are crucial for regulating the structure of IDPs, highlighting the importance of considering dynamical cooperativity in future studies of protein behavior under varying temperature conditions.
Collapse
Affiliation(s)
- Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| | | | - Hiroshi Nakagawa
- J-PARC Center, JAEA, Ibaraki, Japan; Materials Sciences Research Center, JAEA, Ibaraki, Japan
| | - Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Ibaraki, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hiroki Iwase
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Ibaraki, Japan
| | | | - Mamoru Sato
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan; Neutron Industrial Application Promotion Center, Comprehensive Research Organization for Science and Society (CROSS), Ibaraki, Japan.
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan.
| |
Collapse
|
3
|
Elena-Real CA, Urbanek A, Sagar A, Mohanty P, Levy G, Morató A, Fournet A, Allemand F, Sibille N, Mittal J, Sinnaeve D, Bernadó P. Site-Specific Incorporation of Fluorinated Prolines into Proteins and Their Impact on Neighbouring Residues. Chemistry 2025; 31:e202403718. [PMID: 39661394 PMCID: PMC11772113 DOI: 10.1002/chem.202403718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
The incorporation of fluorinated amino acids into proteins provides new opportunities to study biomolecular structure-function relationships in an elegant manner. The available strategies to incorporate the majority of fluorinated amino acids are not site-specific or imply important structural modifications. Here, we present a chemical biology approach for the site-specific incorporation of three commercially available Cγ-modified fluoroprolines that has been validated using a non-pathogenic version of huntingtin exon-1 (HttExon-1). 19F, 1H and 15N NMR chemical shifts measured for multiple variants of HttExon-1 indicated that the trans/cis ratio was strongly dependent on the fluoroproline variant and the sequence context. By isotopically labelling the rest of the protein, we have shown that the extent of spectroscopic perturbations to the neighbouring residues depends on the number of fluorine atoms and the stereochemistry at Cγ, as well as the isomeric form of the fluoroproline. We have rationalized these observations by means of extensive molecular dynamics simulations, indicating that the observed atomic chemical shift perturbations correlate with the distance to fluorine atoms and that the effect remains very local. These results validate the site-specific incorporation of fluoroprolines as an excellent strategy to monitor intra- and intermolecular interactions in disordered proline-rich proteins.
Collapse
Affiliation(s)
- Carlos A. Elena-Real
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Annika Urbanek
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Amin Sagar
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M, College Station, TX 77843
| | - Geraldine Levy
- Univ. Lille, INSERM, Institut Pasteur de Lille, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases. 59000 Lille, France
- CNRS EMR9002 – Integrative Structural Biology, 59000 Lille, France
| | - Anna Morató
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Aurélie Fournet
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Frédéric Allemand
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M, College Station, TX 77843
- Department of Chemistry, Texas A&M University, College Station, TX 77843
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843
| | - Davy Sinnaeve
- Univ. Lille, INSERM, Institut Pasteur de Lille, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases. 59000 Lille, France
- CNRS EMR9002 – Integrative Structural Biology, 59000 Lille, France
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| |
Collapse
|
4
|
López-Sánchez R, Laurents DV, Mompeán M. Hydrogen bonding patterns and cooperativity in polyproline II helical bundles. Commun Chem 2024; 7:191. [PMID: 39215165 PMCID: PMC11364801 DOI: 10.1038/s42004-024-01268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Hydrogen bond cooperativity (HBC) plays an important role in stabilizing protein assemblies built by α-helices and β-sheets, the most common secondary structures. However, whether HBC exists in other types of protein secondary structures such as polyproline II (PPII) helices remains unexplored. This is intriguing, since PPII systems as assembling blocks are continuously emerging across multiple fields. Here, using a combination of computational chemistry tools and molecular modeling corroborated by experimental observables, we characterize the distinct H-bonding patterns present in PPII helical bundles and establish that HBC stabilizes intermolecular PPII helices as seen in other protein assemblies such as amyloid fibrils. In addition to cooperative interactions in canonical CO···HN H-bonds, we show that analogous interactions in non-canonical CO···HαCα H-bonds are relevant in Gly-rich PPII bundles, thus compensating for the inability of glycine residues to create hydrophobic cores. Our results provide a mechanistic explanation for the assembly of these bundles.
Collapse
Affiliation(s)
| | | | - Miguel Mompeán
- Instituto de Química Física "Blas Cabrera" - CSIC, Madrid, Spain.
| |
Collapse
|
5
|
Umumararungu T, Gahamanyi N, Mukiza J, Habarurema G, Katandula J, Rugamba A, Kagisha V. Proline, a unique amino acid whose polymer, polyproline II helix, and its analogues are involved in many biological processes: a review. Amino Acids 2024; 56:50. [PMID: 39182198 PMCID: PMC11345334 DOI: 10.1007/s00726-024-03410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Proline is a unique amino acid in that its side-chain is cyclised to the backbone, thus giving proline an exceptional rigidity and a considerably restricted conformational space. Polyproline forms two well-characterized helical structures: a left-handed polyproline helix (PPII) and a right-handed polyproline helix (PPI). Usually, sequences made only of prolyl residues are in PPII conformation, but even sequences not rich in proline but which are rich in glycine, lysine, glutamate, or aspartate have also a tendency to form PPII helices. Currently, the only way to study unambiguously PPII structure in solution is to use spectroscopies based on optical activity such as circular dichroism, vibrational circular dichroism and Raman optical activity. The importance of the PPII structure is emphasized by its ubiquitous presence in different organisms from yeast to human beings where proline-rich motifs and their binding domains are believed to be involved in vital biological processes. Some of the domains that are bound by proline-rich motifs include SH3 domains, WW domains, GYF domains and UEV domains, etc. The PPII structure has been demonstrated to be essential to biological activities such as signal transduction, transcription, cell motility, and immune response.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Industrial Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| | - Noël Gahamanyi
- Department of Biology, School of Science, College of Science and Technology, University of Rwanda, Kigali, Rwanda
- Rwanda Biomedical Center, Microbiology Unit, National Reference Laboratory, Kigali, Rwanda
| | - Janvier Mukiza
- Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Jonathan Katandula
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Alexis Rugamba
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Vedaste Kagisha
- Department of Pharmaceuticals and Biomolecules Analysis, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
6
|
Rodríguez CS, Laurents DV. Architectonic principles of polyproline II helix bundle protein domains. Arch Biochem Biophys 2024; 756:109981. [PMID: 38593862 DOI: 10.1016/j.abb.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Glycine rich polyproline II helix assemblies are an emerging class of natural domains found in several proteins with different functions and diverse origins. The distinct properties of these domains relative to those composed of α-helices and β-sheets could make glycine-rich polyproline II helix assemblies a useful building block for protein design. Whereas the high population of polyproline II conformers in disordered state ensembles could facilitate glycine-rich polyproline II helix folding, the architectonic bases of these structures are not well known. Here, we compare and analyze their structures to uncover common features. These protein domains are found to be highly tolerant of distinct flanking sequences. This speaks to the robustness of this fold and strongly suggests that glycine rich polyproline II assemblies could be grafted with other protein domains to engineer new structures and functions. These domains are also well packed with few or no cavities. Moreover, a significant trend towards antiparallel helix configuration is observed in all these domains and could provide stabilizing interactions among macrodipoles. Finally, extensive networks of Cα-H···OC hydrogen bonds are detected in these domains. Despite their diverse evolutionary origins and activities, glycine-rich polyproline II helix assemblies share architectonic features which could help design novel proteins.
Collapse
Affiliation(s)
| | - Douglas V Laurents
- Instituto de Química Física "Blas Cabrera" CSIC, Serrano 119 Madrid, Spain.
| |
Collapse
|
7
|
Stochaj U. Yeast profilin mutants inhibit classical nuclear import and alter the balance between actin and tubulin levels. Biochem Cell Biol 2024; 102:206-212. [PMID: 38048555 DOI: 10.1139/bcb-2023-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
Profilin is a small protein that controls actin polymerization in yeast and higher eukaryotes. In addition, profilin has emerged as a multifunctional protein that contributes to other processes in multicellular organisms. This study focuses on profilin (Pfy1) in the budding yeast Saccharomyces cerevisiae. The primary sequences of yeast Pfy1 and its metazoan orthologs diverge vastly. However, structural elements of profilin are conserved among different species. To date, the full spectrum of Pfy1 functions has yet to be defined. The current work explores the possible involvement of yeast profilin in nuclear protein import. To this end, a panel of well-characterized yeast profilin mutants was evaluated. The experiments demonstrate that yeast profilin (i) regulates nuclear protein import, (ii) determines the subcellular localization of essential nuclear transport factors, and (iii) controls the relative abundance of actin and tubulin. Together, these results define yeast profilin as a moonlighting protein that engages in multiple essential cellular activities.
Collapse
Affiliation(s)
- Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
- Quantitative Life Sciences Program, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
8
|
Elena-Real CA, Mier P, Sibille N, Andrade-Navarro MA, Bernadó P. Structure-function relationships in protein homorepeats. Curr Opin Struct Biol 2023; 83:102726. [PMID: 37924569 DOI: 10.1016/j.sbi.2023.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
Homorepeats (or polyX), protein segments containing repetitions of the same amino acid, are abundant in proteomes from all kingdoms of life and are involved in crucial biological functions as well as several neurodegenerative and developmental diseases. Mainly inserted in disordered segments of proteins, the structure/function relationships of homorepeats remain largely unexplored. In this review, we summarize present knowledge for the most abundant homorepeats, highlighting the role of the inherent structure and the conformational influence exerted by their flanking regions. Recent experimental and computational methods enable residue-specific investigations of these regions and promise novel structural and dynamic information for this elusive group of proteins. This information should increase our knowledge about the structural bases of phenomena such as liquid-liquid phase separation and trinucleotide repeat disorders.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France. https://twitter.com/carloselenareal
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz. Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz. Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
9
|
Pesce F, Lindorff-Larsen K. Combining Experiments and Simulations to Examine the Temperature-Dependent Behavior of a Disordered Protein. J Phys Chem B 2023. [PMID: 37433228 DOI: 10.1021/acs.jpcb.3c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Intrinsically disordered proteins are a class of proteins that lack stable folded conformations and instead adopt a range of conformations that determine their biochemical functions. The temperature-dependent behavior of such disordered proteins is complex and can vary depending on the specific protein and environment. Here, we have used molecular dynamics simulations and previously published experimental data to investigate the temperature-dependent behavior of histatin 5, a 24-residue-long polypeptide. We examined the hypothesis that histatin 5 undergoes a loss of polyproline II (PPII) structure with increasing temperature, leading to more compact conformations. We found that the conformational ensembles generated by the simulations generally agree with small-angle X-ray scattering data for histatin 5, but show some discrepancies with the hydrodynamic radius as probed by pulsed-field gradient NMR spectroscopy, and with the secondary structure information derived from circular dichroism. We attempted to reconcile these differences by reweighting the conformational ensembles against the scattering and NMR data. By doing so, we were in part able to capture the temperature-dependent behavior of histatin 5 and to link the observed decrease in hydrodynamic radius with increasing temperature to a loss of PPII structure. We were, however, unable to achieve agreement with both the scattering and NMR data within experimental errors. We discuss different possible reasons for this including inaccuracies in the force field, differences in conditions of the NMR and scattering experiments, and issues related to the calculation of the hydrodynamic radius from conformational ensembles. Our study highlights the importance of integrating multiple types of experimental data when modeling conformational ensembles of disordered proteins and how environmental factors such as the temperature influence them.
Collapse
Affiliation(s)
- Francesco Pesce
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
10
|
Treviño MÁ, López-Sánchez R, Moya MR, Pantoja-Uceda D, Mompeán M, Laurents DV. Insight into polyproline II helical bundle stability in an antifreeze protein denatured state. Biophys J 2022; 121:4560-4568. [PMID: 36815707 PMCID: PMC9748357 DOI: 10.1016/j.bpj.2022.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022] Open
Abstract
The use of polyproline II (PPII) helices in protein design is currently hindered by limitations in our understanding of their conformational stability and folding. Recent studies of the snow flea antifreeze protein (sfAFP), a useful model system composed of six PPII helices, suggested that a low denatured state entropy contributes to folding thermodynamics. Here, circular dichroism spectroscopy revealed minor populations of PPII like conformers at low temperature. To get atomic level information on the conformational ensemble and entropy of the reduced, denatured state of sfAFP, we have analyzed its chemical shifts and {1H}-15N relaxation parameters by NMR spectroscopy at four experimental conditions. No significant populations of stable secondary structure were detected. The stiffening of certain N-terminal residues at neutral versus acidic pH and shifted pKa values leads us to suggest that favorable charge-charge interactions could bias the conformational ensemble to favor the formation the C1-C28 disulfide bond during nascent folding, although no evidence for preferred contacts between these positions was detected by paramagnetic relaxation enhancement under denaturing conditions. Despite a high content of flexible glycine residues, the mobility of the sfAFP denatured ensemble is similar for denatured α/β proteins both on fast ps/ns as well as slower μs/ms timescales. These results are in line with a conformational entropy in the denatured ensemble resembling that of typical proteins and suggest that new structures based on PPII helical bundles should be amenable to protein design.
Collapse
|
11
|
BERT-PPII: The Polyproline Type II Helix Structure Prediction Model Based on BERT and Multichannel CNN. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9015123. [PMID: 36060139 PMCID: PMC9433275 DOI: 10.1155/2022/9015123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
Predicting the polyproline type II (PPII) helix structure is crucial important in many research areas, such as the protein folding mechanisms, the drug targets, and the protein functions. However, many existing PPII helix prediction algorithms encode the protein sequence information in a single way, which causes the insufficient learning of protein sequence feature information. To improve the protein sequence encoding performance, this paper proposes a BERT-based PPII helix structure prediction algorithm (BERT-PPII), which learns the protein sequence information based on the BERT model. The BERT model's CLS vector can fairly fuse sample's each amino acid residue information. Thus, we utilize the CLS vector as the global feature to represent the sample's global contextual information. As the interactions among the protein chains' local amino acid residues have an important influence on the formation of PPII helix, we utilize the CNN to extract local amino acid residues' features which can further enhance the information expression of protein sequence samples. In this paper, we fuse the CLS vectors with CNN local features to improve the performance of predicting PPII structure. Compared to the state-of-the-art PPIIPRED method, the experimental results on the unbalanced dataset show that the proposed method improves the accuracy value by 1% on the strict dataset and 2% on the less strict dataset. Correspondingly, the results on the balanced dataset show that the AUCs of the proposed method are 0.826 on the strict dataset and 0.785 on less strict datasets, respectively. For the independent test set, the proposed method has the AUC value of 0.827 on the strict dataset and 0.783 on the less strict dataset. The above experimental results have proved that the proposed BERT-PPII method can achieve a superior performance of predicting the PPII helix.
Collapse
|
12
|
Laurents DV. AlphaFold 2 and NMR Spectroscopy: Partners to Understand Protein Structure, Dynamics and Function. Front Mol Biosci 2022; 9:906437. [PMID: 35655760 PMCID: PMC9152297 DOI: 10.3389/fmolb.2022.906437] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
The artificial intelligence program AlphaFold 2 is revolutionizing the field of protein structure determination as it accurately predicts the 3D structure of two thirds of the human proteome. Its predictions can be used directly as structural models or indirectly as aids for experimental structure determination using X-ray crystallography, CryoEM or NMR spectroscopy. Nevertheless, AlphaFold 2 can neither afford insight into how proteins fold, nor can it determine protein stability or dynamics. Rare folds or minor alternative conformations are also not predicted by AlphaFold 2 and the program does not forecast the impact of post translational modifications, mutations or ligand binding. The remaining third of human proteome which is poorly predicted largely corresponds to intrinsically disordered regions of proteins. Key to regulation and signaling networks, these disordered regions often form biomolecular condensates or amyloids. Fortunately, the limitations of AlphaFold 2 are largely complemented by NMR spectroscopy. This experimental approach provides information on protein folding and dynamics as well as biomolecular condensates and amyloids and their modulation by experimental conditions, small molecules, post translational modifications, mutations, flanking sequence, interactions with other proteins, RNA and virus. Together, NMR spectroscopy and AlphaFold 2 can collaborate to advance our comprehension of proteins.
Collapse
|
13
|
Wright DE, De la Rosa MA. Entering the second decade: FEBS Open Bio in 2022. FEBS Open Bio 2022; 12:4-8. [PMID: 34927398 PMCID: PMC8727927 DOI: 10.1002/2211-5463.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/07/2022] Open
Abstract
FEBS Open Bio continues to go from strength to strength, with 2021 perhaps marking its most exciting year. In this Editorial, the Editor-in-Chief Miguel A. De la Rosa looks back at all the new developments of 2021 and forecasts the outlook for 2022.
Collapse
Affiliation(s)
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)Universidad de Sevilla‐CSICSevillaSpain
| |
Collapse
|
14
|
Kubyshkin V, Bürck J, Babii O, Budisa N, Ulrich AS. Remarkably high solvatochromism in the circular dichroism spectra of the polyproline-II conformation: limitations or new opportunities? Phys Chem Chem Phys 2021; 23:26931-26939. [PMID: 34825904 DOI: 10.1039/d1cp04551b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circular dichroism is a conventional method for studying the secondary structures of peptides and proteins and their transitions. While certain circular dichroism features are characteristic of α-helices and β-strands, the third most abundant secondary structure, the polyproline-II helix, does not exhibit a strictly conserved spectroscopic appearance. Due to its extended nature, the polyproline-II helix is highly accessible to the surrounding solvent; thus, the environment has a critical influence on the lineshape of the circular dichroism spectra of this structure. To showcase possible effects due to the medium, in this work, we report an experimental spectroscopic study of polyproline-II-forming oligomeric peptides in various environments: solvents, detergent micelles, and liposomes. Strikingly, the examination of an oligomeric peptide in a solvent series showed a remarkable 7 nm solvatochromic shift in the main negative band starting with hexafluoropropan-2-ol and moving to hexane. Furthermore, a previously predicted positive band below 200 nm was discovered in the spectra in nonpolar environments. In isotropic liposomes, the expected transition to the transmembrane state correlated with the appearance of a positive band at 228 nm. Our results demonstrate that changes in solvation should be taken into consideration when assessing the circular dichroism spectra of peptides expected to adopt the polyproline-II conformation. Although this precaution may complicate spectral analysis, characterization of solvent-induced spectral changes can generate new opportunities for testing the location of peptides in complex systems such as micelles or lipid bilayers.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, Karlsruhe 76021, Germany
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, Karlsruhe 76021, Germany
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, Manitoba, R3T 2N2, Canada. .,Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin 10623, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, Karlsruhe 76021, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| |
Collapse
|
15
|
Kar M, Posey AE, Dar F, Hyman AA, Pappu RV. Glycine-Rich Peptides from FUS Have an Intrinsic Ability to Self-Assemble into Fibers and Networked Fibrils. Biochemistry 2021; 60:3213-3222. [PMID: 34648275 PMCID: PMC10715152 DOI: 10.1021/acs.biochem.1c00501] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycine-rich regions feature prominently in intrinsically disordered regions (IDRs) of proteins that drive phase separation and the regulated formation of membraneless biomolecular condensates. Interestingly, the Gly-rich IDRs seldom feature poly-Gly tracts. The protein fused in sarcoma (FUS) is an exception. This protein includes two 10-residue poly-Gly tracts within the prion-like domain (PLD) and at the interface between the PLD and the RNA binding domain. Poly-Gly tracts are known to be highly insoluble, being potent drivers of self-assembly into solid-like fibrils. Given that the internal concentrations of FUS and FUS-like molecules cross the high micromolar and even millimolar range within condensates, we reasoned that the intrinsic insolubility of poly-Gly tracts might be germane to emergent fluid-to-solid transitions within condensates. To assess this possibility, we characterized the concentration-dependent self-assembly for three non-overlapping 25-residue Gly-rich peptides derived from FUS. Two of the three peptides feature 10-residue poly-Gly tracts. These peptides form either long fibrils based on twisted ribbon-like structures or self-supporting gels based on physical cross-links of fibrils. Conversely, the peptide with similar Gly contents but lacking a poly-Gly tract does not form fibrils or gels. Instead, it remains soluble across a wide range of concentrations. Our findings highlight the ability of poly-Gly tracts within IDRs that drive phase separation to undergo self-assembly. We propose that these tracts are likely to contribute to nucleation of fibrillar solids within dense condensates formed by FUS.
Collapse
Affiliation(s)
- Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics (MPI-CBG), 01307 Dresden, Germany
| | - Ammon E. Posey
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Furqan Dar
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Anthony A. Hyman
- Max Planck Institute of Cell Biology and Genetics (MPI-CBG), 01307 Dresden, Germany
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
16
|
Abstract
While most organelles are surrounded by membranes, cells also contain membraneless organelles, which remain separated in the cell by avoiding the mixture of their components with the surroundings. Actually, liquid–liquid phase separation provides a simple but smart mechanism for the cell to control the spatial localization and processing of molecules, without relying on membrane boundaries. This Special ‘In the Limelight’ section, entitled ‘Membraneless organelles’, consists of three review articles, each focused on a particular aspect. The first article deals with assembly of coacervates as mediated by polyproline II helices, as well as with condensate stability. The second article addresses the formation of protein–nucleic acid coacervates by prion‐like proteins and their link to human diseases. Finally, the last article focuses on mitochondrial cytochrome c translocation into the nucleus after DNA damage, with the subsequent inhibition of nucleosome assembly/disassembly activity of histone chaperones and its impact on chromatin dynamics and nuclear condensates.
Collapse
Affiliation(s)
- Irene Díaz-Moreno
- Instituto de Investigaciones Químicas, Universidad de Sevilla-CSIC, Spain
| | | |
Collapse
|