1
|
Guo Z, Wang Z. Relationship between periodontitis and chronic obstructive pulmonary disease: a bibliometric analysis from 1945 to 2023. Med Oral Patol Oral Cir Bucal 2025; 30:e1-e16. [PMID: 39582409 PMCID: PMC11801683 DOI: 10.4317/medoral.26582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) and periodontitis are common chronic diseases. The presence of either of the two diseases increases the risk of the other, whereas managing one reduces the risk of the other. This study aimed to summarize the current state of research and trends in this field using bibliometric analysis and visualization. MATERIAL AND METHODS We used PubMed to search and download all periodontal disease- and COPD-related studies published until August 20, 2023. We further performed bibliometric analysis on the text R and Python software and visualized the results using Gephi and VOSviewer to construct latent Dirichlet allocation models that summarize idiosyncratic research themes. RESULTS A total of 2, 109 publications were analyzed, with recent ones focusing on risk factors and pandemics. The country that produced the most publications was the United States with 427 publications. The most cited article was by Prof. Wang Zuomin. International Journal of Chronic Obstructive Pulmonary Disease ranked first in publications. Keywords were focused on Risk Factors and Pandemics. In addition, COVID-19, SARS-CoV-2 and coronavirus infections have become a research hotspot since 2020. However, little attention has been paid to environmental contamination and biological mechanisms. CONCLUSIONS Research on periodontitis and COPD is expanding, and it currently focused on exploring risk factors and conducting clinical epidemiological studies. This exhaustive study provides a comprehensive summary of trends in this field and has important clinical implications for the screening and treatment of patients with COPD and periodontitis.
Collapse
Affiliation(s)
- Z Guo
- Department of Stomatology Beijing Chaoyang Hospital, Capital Medical University No.8, Gongti South Road, Chaoyang District Beijing 100020, China
| | | |
Collapse
|
2
|
Garmendia J, Cebollero‐Rivas P. Environmental exposures, the oral-lung axis and respiratory health: The airway microbiome goes on stage for the personalized management of human lung function. Microb Biotechnol 2024; 17:e14506. [PMID: 38881505 PMCID: PMC11180993 DOI: 10.1111/1751-7915.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Abstract
The human respiratory system is constantly exposed to environmental stimuli, sometimes including toxicants, which can trigger dysregulated lung immune responses that lead to respiratory symptoms, impaired lung function and airway diseases. Evidence supports that the microbiome in the lungs has an indispensable role in respiratory health and disease, acting as a local gatekeeper that mediates the interaction between the environmental cues and respiratory health. Moreover, the microbiome in the lungs is intimately intertwined with the oral microbiome through the oral-lung axis. Here, we discuss the intricate three-way relationship between (i) cigarette smoking, which has strong effects on the microbial community structure of the lung; (ii) microbiome dysbiosis and disease in the oral cavity; and (iii) microbiome dysbiosis in the lung and its causal role in patients suffering chronic obstructive pulmonary disease (COPD), a leading cause of morbidity and mortality worldwide. We highlight exciting outcomes arising from recently established interactions in the airway between environmental exposures, microbiome, metabolites-functional attributes and the host, as well as how these associations have the potential to predict the respiratory health status of the host through an airway microbiome health index. For completion, we argue that incorporating (synthetic) microbial community ecology in our contemporary understanding of lung disease presents challenges and also rises novel opportunities to exploit the oral-lung axis and its microbiome towards innovative airway disease diagnostics, prognostics, patient stratification and microbiota-targeted clinical interventions in the context of current therapies.
Collapse
Affiliation(s)
- Junkal Garmendia
- Instituto de AgrobiotecnologíaConsejo Superior de Investigaciones Científicas (IdAB‐CSIC)‐Gobierno de NavarraMutilvaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Pilar Cebollero‐Rivas
- Servicio de NeumologíaHospital Universitario de NavarraNavarraSpain
- Universidad Pública de Navarra (UPNa)NavarraSpain
| |
Collapse
|
3
|
Feng N, Han X, Peng D, Geng F, Li Q, Pan C, Wang H, Pan Y, Tan L. P. gingivalis alters lung microbiota and aggravates disease severity of COPD rats by up-regulating Hsp90α/MLKL. J Oral Microbiol 2024; 16:2334588. [PMID: 38550659 PMCID: PMC10977012 DOI: 10.1080/20002297.2024.2334588] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/19/2024] [Indexed: 11/12/2024] Open
Abstract
Background Epidemiological evidence has confirmed that periodontitis is an essential and independent risk factor of chronic obstructive pulmonary disease (COPD). Porphyromonas gingivalis, a major pathogen implicated in periodontitis, may make a vital contribution to COPD progression. However, the specific effects and molecular mechanism of the link between P. gingivalis and COPD are not clear. Methods and Results A COPD rat model was constructed by smoke exposure combined intratracheal instillation of E. coli-LPS, then P. gingivalis was introduced into the oral cavity of COPD rats. This research observed that lower lung function, more severe alveolar damage and inflammation occurred in COPD rats with P. gingivalis group. Meanwhile, P. gingivalis/gingipains could colonize the lung tissues and be enriched in bronchoalveolar lavage fluid (BALF) of COPD rats with P. gingivalis group, along with alterations in lung microbiota. Proteomic analysis suggested that Hsp90α/MLKL-meditated necroptosis pathway was up-regulated in P. gingivalis-induced COPD aggravation, the detection of Hsp90α and MLKL in serum and lung tissue verified that Hsp90α/MLKL was up-regulated. Conclusion These results indicate that P. gingivalis could emigrate into the lungs, alter lung microbiota and lead to aggravation of COPD, which Hsp90α/MLKL might participate in.
Collapse
Affiliation(s)
- Nan Feng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xuan Han
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Da Peng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qian Li
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chunlin Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hongyan Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lisi Tan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Wang C, Ma A, Li Y, McNutt ME, Zhang S, Zhu J, Hoyd R, Wheeler CE, Robinson LA, Chan CH, Zakharia Y, Dodd RD, Ulrich CM, Hardikar S, Churchman ML, Tarhini AA, Singer EA, Ikeguchi AP, McCarter MD, Denko N, Tinoco G, Husain M, Jin N, Osman AE, Eljilany I, Tan AC, Coleman SS, Denko L, Riedlinger G, Schneider BP, Spakowicz D, Ma Q. A Bioinformatics Tool for Identifying Intratumoral Microbes from the ORIEN Dataset. CANCER RESEARCH COMMUNICATIONS 2024; 4:293-302. [PMID: 38259095 PMCID: PMC10840455 DOI: 10.1158/2767-9764.crc-23-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10%-20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, microbial graph attention (MEGA), to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of nine cancer centers in the Oncology Research Information Exchange Network. This package has three unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2,704 tumor RNA sequencing samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors. SIGNIFICANCE Studying the tumor microbiome in high-throughput sequencing data is challenging because of the extremely sparse data matrices, heterogeneity, and high likelihood of contamination. We present a new deep learning tool, MEGA, to refine the organisms that interact with tumors.
Collapse
Affiliation(s)
- Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Yingjie Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Megan E. McNutt
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Shiqi Zhang
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Jiangjiang Zhu
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Rebecca Hoyd
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Caroline E. Wheeler
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Lary A. Robinson
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Carlos H.F. Chan
- University of Iowa, Holden Comprehensive Cancer Center, Iowa City, Iowa
| | - Yousef Zakharia
- Division of Oncology, Hematology and Blood & Marrow Transplantation, University of Iowa, Holden Comprehensive Cancer Center, Iowa City, Iowa
| | - Rebecca D. Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Cornelia M. Ulrich
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Sheetal Hardikar
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | - Ahmad A. Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric A. Singer
- Department of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Alexandra P. Ikeguchi
- Department of Hematology/Oncology, Stephenson Cancer Center of University of Oklahoma, Oklahoma City, Oklahoma
| | - Martin D. McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Nicholas Denko
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Gabriel Tinoco
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Marium Husain
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ning Jin
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Afaf E.G. Osman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Islam Eljilany
- Clinical Science Lab – Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Aik Choon Tan
- Departments of Oncological Science and Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Samuel S. Coleman
- Departments of Oncological Science and Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Louis Denko
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Gregory Riedlinger
- Department of Precision Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Bryan P. Schneider
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Daniel Spakowicz
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | |
Collapse
|
5
|
Lin P, Liu A, Tsuchiya Y, Noritake K, Ohsugi Y, Toyoshima K, Tsukahara Y, Shiba T, Nitta H, Aoki A, Iwata T, Katagiri S. Association between periodontal disease and chronic obstructive pulmonary disease. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:389-402. [PMID: 38022389 PMCID: PMC10652094 DOI: 10.1016/j.jdsr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and periodontal disease are chronic inflammatory conditions that significantly affect an individual's overall health and well-being. Generally, the prevalence of periodontitis is higher in patients with COPD than those without COPD, which may partly be attributed to common risk factors in COPD, such as smoking, respiratory infections, and inflammation. In particular, periodontitis may exacerbate the progression of COPD and further deteriorate the respiratory system by promoting inflammatory responses and bacterial infections. Immunocytes, including neutrophils, and microorganisms such as Fusobacterium nucleatum originating from oral biofilms are believed to be crucial factors influencing to COPD. Furthermore, the potential benefits of treating periodontal disease in COPD outcomes have been investigated. Although the relationship between COPD and periodontal disease has been preliminarily studied, there is currently a lack of large-scale clinical studies to validate this association. In addition to clinical examinations, investigating biomarkers and microbiology may contribute to explore the underlying mechanisms involved in the management of these conditions. This review aims to contribute to a better understanding of the clinical and basic research aspects of COPD and periodontitis, allowing for potential therapeutic approaches and interdisciplinary management strategies.
Collapse
Affiliation(s)
- Peiya Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Anhao Liu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yosuke Tsuchiya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kanako Noritake
- Oral Diagnosis and General Dentistry, Division of Clinical Dentistry, Tokyo Medical and Dental University Hospital, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Keita Toyoshima
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuta Tsukahara
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Hiroshi Nitta
- Department of General Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
6
|
Karahashi Y, Cueno ME, Kamio N, Takahashi Y, Takeshita I, Soda K, Maruoka S, Gon Y, Sato S, Imai K. Fusobacterium nucleatum putatively affects the alveoli by disrupting the alveolar epithelial cell tight junction, enlarging the alveolar space, and increasing paracellular permeability. Biochem Biophys Res Commun 2023; 682:216-222. [PMID: 37826945 DOI: 10.1016/j.bbrc.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Fusobacterium nucleatum (Fn) is abundant in the human oral cavity and has been associated with periodontal disease, which in-turn has been linked to respiratory disease development. Tight junctions (TJs) line the airway and alveoli surfaces serving as a first line of defense against multiple pathogens. Fn has already been linked to respiratory diseases, however, how Fn affects the alveolar TJ was not fully elucidated. Here, we designed and analyzed a TJ network, grew Fn cells and inoculated it in vitro (16HBE and primary cells) and in vivo (mice lung), measured transepithelial electrical resistance, performed RT-PCR, checked for in vitro cell and mice lung permeability, and determined air space size through morphometric measurements. We found that Fn can potentially affect TJs proteins that are directly exposed to the alveolar surface. Additionally, Fn could possibly cause neutrophil accumulation and an increase in alveolar space. Moreover, Fn putatively may cause an increase in paracellular permeability in the alveoli.
Collapse
Affiliation(s)
- Yukihiro Karahashi
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan; Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Marni E Cueno
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Noriaki Kamio
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Yuwa Takahashi
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Ikuko Takeshita
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Kaori Soda
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Kenichi Imai
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan.
| |
Collapse
|
7
|
Tamiya H, Mitani A, Abe M, Nagase T. Putative Bidirectionality of Chronic Obstructive Pulmonary Disease and Periodontal Disease: A Review of the Literature. J Clin Med 2023; 12:5935. [PMID: 37762876 PMCID: PMC10531527 DOI: 10.3390/jcm12185935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The prevalence of chronic obstructive pulmonary disease (COPD) is increasing worldwide and is currently the third leading cause of death globally. The long-term inhalation of toxic substances, mainly cigarette smoke, deteriorates pulmonary function over time, resulting in the development of COPD in adulthood. Periodontal disease is an inflammatory condition that affects most adults and is caused by the bacteria within dental plaque. These bacteria dissolve the gums around the teeth and the bone that supports them, ultimately leading to tooth loss. Periodontal disease and COPD share common risk factors, such as aging and smoking. Other similarities include local chronic inflammation and links with the onset and progression of systemic diseases such as ischemic heart disease and diabetes mellitus. Understanding whether interventions for periodontal disease improve the disease trajectory of COPD (and vice versa) is important, given our rapidly aging society. This review focuses on the putative relationship between COPD and periodontal disease while exploring current evidence and future research directions.
Collapse
Affiliation(s)
- Hiroyuki Tamiya
- Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- The Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akihisa Mitani
- The Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masanobu Abe
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Takahide Nagase
- The Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
8
|
Xiong K, Yang P, Cui Y, Li J, Li Y, Tang B. Research on the Association Between Periodontitis and COPD. Int J Chron Obstruct Pulmon Dis 2023; 18:1937-1948. [PMID: 37675198 PMCID: PMC10479604 DOI: 10.2147/copd.s425172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Periodontitis is a common chronic bacteria-initiated inflammatory disease that is closely associated with various systemic diseases, including chronic obstructive pulmonary disease (COPD). Periodontitis and COPD share similar risk factors, pathology and microorganisms. Epidemiological and clinical research have shown positive correlation between the two diseases. Individuals with severe periodontitis had a higher risk of developing COPD. Moreover, the relative risk of COPD in severe periodontitis was much higher compared to people without periodontal disease and patients with mild to moderate periodontitis. COPD patients with periodontitis had a higher frequency of COPD exacerbation and periodontal treatment demonstrated some control of COPD. However, the nature of periodontitis affecting COPD still needs further exploration. Periodontitis caused microbial and immune imbalances of the lung through several aspects: (I) under periodontitis status, periodontal pathogens directly caused the lung inflammatory reaction after inhalation and colonization on the lung, (II) periodontitis status promoted the oral colonization of pneumonia-associated pathogens, (III) periodontitis status affected the respiratory epithelium structure and (IV) periodontitis status caused imbalances in neutrophils, macrophages and inflammatory cytokines. In this review, we conclude the association between periodontitis and COPD through several aspects and further discuss the potential mechanism by which periodontitis affects COPD.
Collapse
Affiliation(s)
- Kaixin Xiong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Peng Yang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Jia Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Yan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Conservation Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
9
|
Shi T, Wang J, Dong J, Hu P, Guo Q. Periodontopathogens Porphyromonas gingivalis and Fusobacterium nucleatum and Their Roles in the Progression of Respiratory Diseases. Pathogens 2023; 12:1110. [PMID: 37764918 PMCID: PMC10535846 DOI: 10.3390/pathogens12091110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The intricate interplay between oral microbiota and the human host extends beyond the confines of the oral cavity, profoundly impacting the general health status. Both periodontal diseases and respiratory diseases show high prevalence worldwide and have a marked influence on the quality of life for the patients. Accumulating studies are establishing a compelling association between periodontal diseases and respiratory diseases. Here, in this review, we specifically focus on the key periodontal pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum and dissect their roles in the onset and course of respiratory diseases, mainly pneumonia, chronic obstructive pulmonary disease, lung cancer, and asthma. The mechanistic underpinnings and molecular processes on how P. gingivalis and F. nucleatum contribute to the progression of related respiratory diseases are further summarized and analyzed, including: induction of mucus hypersecretion and chronic airway inflammation; cytotoxic effects to disrupt the morphology and function of respiratory epithelial cells; synergistic pathogenic effects with respiratory pathogens like Streptococcus pneumoniae and Pseudomonas aeruginosa. By delving into the complex relationship to periodontal diseases and periodontopathogens, this review helps unearth novel insights into the etiopathogenesis of respiratory diseases and inspires the development of potential therapeutic avenues and preventive strategies.
Collapse
Affiliation(s)
- Tao Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiajia Dong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pingyue Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Duggan WP, Salvucci M, Kisakol B, Lindner AU, Reynolds IS, Dussmann H, Fay J, O'Grady T, Longley DB, Ginty F, Mc Donough E, Slade DJ, Burke JP, Prehn JHM. Increased Fusobacterium tumoural abundance affects immunogenicity in mucinous colorectal cancer and may be associated with improved clinical outcome. J Mol Med (Berl) 2023; 101:829-841. [PMID: 37171483 PMCID: PMC10300184 DOI: 10.1007/s00109-023-02324-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
There is currently an urgent need to identify factors predictive of immunogenicity in colorectal cancer (CRC). Mucinous CRC is a distinct histological subtype of CRC, associated with a poor response to chemotherapy. Recent evidence suggests the commensal facultative anaerobe Fusobacterium may be especially prevalent in mucinous CRC. The objectives of this study were to assess the association of Fusobacterium abundance with immune cell composition and prognosis in mucinous CRC. Our study included two independent colorectal cancer patient cohorts, The Cancer Genome Atlas (TCGA) cohort, and a cohort of rectal cancers from the Beaumont RCSI Cancer Centre (BRCC). Multiplexed immunofluorescence staining of a tumour microarray (TMA) from the BRCC cohort was undertaken using Cell DIVE technology. Our cohorts included 87 cases (13.3%) of mucinous and 565 cases (86.7%) of non-mucinous CRC. Mucinous CRC in the TCGA dataset was associated with an increased proportion of CD8 + lymphocytes (p = 0.018), regulatory T-cells (p = 0.001) and M2 macrophages (p = 0.001). In the BRCC cohort, mucinous RC was associated with enhanced CD8 + lymphocyte (p = 0.022), regulatory T-cell (p = 0.047), and B-cell (p = 0.025) counts. High Fusobacterium abundance was associated with an increased proportion of CD4 + lymphocytes (p = 0.031) and M1 macrophages (p = 0.006), whilst M2 macrophages (p = 0.043) were under-represented in this cohort. Patients with increased Fusobacterium relative abundance in our mucinous CRC TCGA cohort tended to have better clinical outcomes (DSS: likelihood ratio p = 0.04, logrank p = 0.052). Fusobacterium abundance may be associated with improved outcomes in mucinous CRC, possibly due to a modulatory effect on the host immune response. KEY MESSAGES: • Increased Fusobacterium relative abundance was not found to be associated with microsatellite instability in mucinous CRC. • Increased Fusobacterium relative abundance was associated with an M2/M1 macrophage switch, which is especially significant in mucinous CRC, where M2 macrophages are overexpressed. • Increased Fusobacterium relative abundance was associated with a significant improvement in disease specific survival in mucinous CRC. • Our findings were validated at a protein level within our own in house mucinous and non-mucinous rectal cancer cohorts.
Collapse
Affiliation(s)
- William P Duggan
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Physiology and Medical Physicsand, RCSI Centre for Systems Medicine , Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physicsand, RCSI Centre for Systems Medicine , Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Batuhan Kisakol
- Department of Physiology and Medical Physicsand, RCSI Centre for Systems Medicine , Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Andreas U Lindner
- Department of Physiology and Medical Physicsand, RCSI Centre for Systems Medicine , Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ian S Reynolds
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Physiology and Medical Physicsand, RCSI Centre for Systems Medicine , Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Heiko Dussmann
- Department of Physiology and Medical Physicsand, RCSI Centre for Systems Medicine , Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Joanna Fay
- RCSI Biobank, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tony O'Grady
- RCSI Biobank, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniel B Longley
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | | | - Daniel J Slade
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - John P Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physicsand, RCSI Centre for Systems Medicine , Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
11
|
Zha H, Xia J, Li S, Lv J, Zhuge A, Tang R, Wang S, Wang K, Chang K, Li L. Airborne polystyrene microplastics and nanoplastics induce nasal and lung microbial dysbiosis in mice. CHEMOSPHERE 2023; 310:136764. [PMID: 36216111 DOI: 10.1016/j.chemosphere.2022.136764] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/11/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MP) and nanoplastics (NP) have been found in multiple environments and creatures. However, their effects on the airway microbiota still remain poorly understood. In this study, a series of bioinformatic and statistical analyses were carried out to explore the influence of airborne MP and NP on the nasal and lung microbiota in mice. Both MP and NP were capable of inducing nasal microbial dysbiosis, and MP had a stronger influence on the lung microbiota than NP. Multiple nasal and lung bacteria were associated with MP and NP groups, among which nasal Staphylococcus and lung Roseburia were most associated with MP group, while nasal Prevotella and lung unclassified_Muribaculaceae were most associated with NP group. The nasal Staphylococcus, lung Roseburia, lung Eggerthella and lung Corynebacterium were associated with both MP and NP groups, which were potential biomarkers of micro/nanoplastics-induced airway dysbiosis. SAR11_Clade_Ia and SAR11_Clade_II were associated with both nasal and lung microbiota in MP group, while no such bacterium was determined in NP group. The relevant results suggest that both airborne MP and NP could induce nasal and lung microbial dysbiosis, and the relevant preventative and curable strategies deserve further investigations.
Collapse
Affiliation(s)
- Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiawen Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaiceng Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kevin Chang
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Vollmer A, Vollmer M, Lang G, Straub A, Shavlokhova V, Kübler A, Gubik S, Brands R, Hartmann S, Saravi B. Associations between Periodontitis and COPD: An Artificial Intelligence-Based Analysis of NHANES III. J Clin Med 2022; 11:jcm11237210. [PMID: 36498784 PMCID: PMC9737076 DOI: 10.3390/jcm11237210] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
A number of cross-sectional epidemiological studies suggest that poor oral health is associated with respiratory diseases. However, the number of cases within the studies was limited, and the studies had different measurement conditions. By analyzing data from the National Health and Nutrition Examination Survey III (NHANES III), this study aimed to investigate possible associations between chronic obstructive pulmonary disease (COPD) and periodontitis in the general population. COPD was diagnosed in cases where FEV (1)/FVC ratio was below 70% (non-COPD versus COPD; binary classification task). We used unsupervised learning utilizing k-means clustering to identify clusters in the data. COPD classes were predicted with logistic regression, a random forest classifier, a stochastic gradient descent (SGD) classifier, k-nearest neighbors, a decision tree classifier, Gaussian naive Bayes (GaussianNB), support vector machines (SVM), a custom-made convolutional neural network (CNN), a multilayer perceptron artificial neural network (MLP), and a radial basis function neural network (RBNN) in Python. We calculated the accuracy of the prediction and the area under the curve (AUC). The most important predictors were determined using feature importance analysis. Results: Overall, 15,868 participants and 19 feature variables were included. Based on k-means clustering, the data were separated into two clusters that identified two risk characteristic groups of patients. The algorithms reached AUCs between 0.608 (DTC) and 0.953% (CNN) for the classification of COPD classes. Feature importance analysis of deep learning algorithms indicated that age and mean attachment loss were the most important features in predicting COPD. Conclusions: Data analysis of a large population showed that machine learning and deep learning algorithms could predict COPD cases based on demographics and oral health feature variables. This study indicates that periodontitis might be an important predictor of COPD. Further prospective studies examining the association between periodontitis and COPD are warranted to validate the present results.
Collapse
Affiliation(s)
- Andreas Vollmer
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, 97070 Würzburg, Germany
- Correspondence:
| | - Michael Vollmer
- Department of Oral and Maxillofacial Surgery, Tuebingen University Hospital, Osianderstrasse 2-8, 72076 Tuebingen, Germany
| | - Gernot Lang
- Department of Orthopedics and Trauma Surgery, Medical Centre-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Anton Straub
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, 97070 Würzburg, Germany
| | - Veronika Shavlokhova
- Division of Medicine, Department of Oral and Maxillofacial Surgery, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
| | - Alexander Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, 97070 Würzburg, Germany
| | - Sebastian Gubik
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, 97070 Würzburg, Germany
| | - Roman Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, 97070 Würzburg, Germany
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, 97070 Würzburg, Germany
| | - Babak Saravi
- Department of Orthopedics and Trauma Surgery, Medical Centre-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|