1
|
Lu R, Abuduhailili X, Li Y, Wang S, Xia X, Feng Y. Integrated Analysis of PSMB8 Expression and Its Potential Roles in Hepatocellular Carcinoma. Dig Dis Sci 2025:10.1007/s10620-025-09040-9. [PMID: 40261568 DOI: 10.1007/s10620-025-09040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) represents a highly aggressive malignancy with significant global health implications. The proteasome subunit beta type-8 (PSMB8) gene, known for its association with hepatitis B virus susceptibility, has emerged as a potential regulator of tumor progression. However, its functional role and clinical significance in HCC remain poorly characterized. METHODS We conducted a comprehensive multi-omics analysis to elucidate the role of PSMB8 in HCC. PSMB8 expression profiles were derived from The Cancer Genome Atlas and validated using the GSE76427 dataset. Prognostic significance was assessed through Kaplan-Meier survival analysis. Then, we systematically evaluated the relationships between PSMB8 expression and clinicopathological features, somatic mutations, immune cell infiltration, immune regulatory genes, and immune checkpoint responses. Single-cell RNA sequencing data from the Tumor Immune Single-cell Hub database were analyzed to determine cell type-specific PSMB8 expression. Tissue-level validation was performed using multiplex immunofluorescence staining on HCC tissue microarrays. RESULTS PSMB8 demonstrated significant overexpression in HCC tissues and exhibited strong prognostic value. Single-cell analysis revealed predominant PSMB8 expression in T and B cell populations. Notably, PSMB8 expression showed significant positive correlations with immune checkpoint molecules PD-L1/CD274 and CD27. Functional enrichment analysis implicated PSMB8 in multiple oncogenic pathways, particularly proteasome-related processes. CONCLUSION Our findings position PSMB8 as a promising prognostic biomarker and potential therapeutic target in HCC. The observed associations with immune checkpoint molecules and proteasomal pathways suggest its potential role in modulating tumor immunity and protein homeostasis, warranting further investigation into its mechanistic contributions to HCC progression.
Collapse
Affiliation(s)
- Ruijiao Lu
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Xieyidai Abuduhailili
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Yuxia Li
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Senyu Wang
- Good Clinical Research Practice, The First Huizhou Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Xigang Xia
- Department of Hepatobiliary Pancreatic Surgery, The First Huizhou Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yangchun Feng
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, China.
- Department of Medical Laboratory Center, The First Huizhou Affiliated Hospital of Guangdong Medical University, Guangdong, China.
| |
Collapse
|
2
|
Tiburcio PD, Chen K, Xu L, Chen KS. Actinomycin D and bortezomib disrupt protein homeostasis in Wilms tumor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598518. [PMID: 38948702 PMCID: PMC11212905 DOI: 10.1101/2024.06.11.598518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Wilms tumor is the most common kidney cancer in children, and diffuse anaplastic Wilms tumor is the most chemoresistant histological subtype. Here, we explore how Wilms tumor cells evade the common chemotherapeutic drug actinomycin D, which inhibits ribosomal RNA biogenesis. Using ribosome profiling, protein arrays, and a genome-wide knockout screen, we describe how actinomycin D disrupts protein homeostasis and blocks cell cycle progression. We found that, when ribosomal capacity is limited by actinomycin D treatment, anaplastic Wilms tumor cells preferentially translate proteasome components and upregulate proteasome activity. Based on these findings, we tested whether the proteasome inhibitor bortezomib sensitizes cells to actinomycin D treatment. Indeed, we found that the combination induces apoptosis both in vitro and in vivo and prolongs survival in xenograft models. Lastly, we show that increased levels of proteasome components are associated with anaplastic histology and worse prognosis in Wilms tumor patients. In sum, maintaining protein homeostasis is critical for Wilms tumor proliferation, and it can be therapeutically disrupted by blocking protein synthesis or turnover.
Collapse
Affiliation(s)
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kenneth S. Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
3
|
He W, Zhang Z, Tan Z, Liu X, Wang Z, Xiong B, Shen X, Zhu X. PSMB2 plays an oncogenic role in glioma and correlates to the immune microenvironment. Sci Rep 2024; 14:5861. [PMID: 38467767 PMCID: PMC10928079 DOI: 10.1038/s41598-024-56493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
There has been an upward trend in the incidence of glioma, with high recurrence and high mortality. The beta subunits of the 20S proteasome are encoded by the proteasome beta (PSMB) genes and may affect the proteasome's function in glioma, assembly and inhibitor binding. This study attempted to reveal the function of the proliferation and invasion of glioma cells, which is affected by proteasome 20S subunit beta 2 (PSMB2). We subjected the data downloaded from the TCGA database to ROC, survival, and enrichment analyses. After establishing the stable PSMB2 knockdown glioma cell line. We detect the changes in the proliferation, invasion and migration of glioma cells by plate colony formation assay, transwell assay, wound healing assay and flow cytometry and PSMB2 expression was verified by quantitative PCR and Western blotting to identify the mRNA and protein levels. PSMB2 expression was higher in glioma tissues, and its expression positively correlated with poor prognosis and high tumor grade and after PSMB2 knockdown, the proliferation, invasion and migration of glioma cells were weakened.
Collapse
Affiliation(s)
- Wei He
- Department of Neurosurgery, The Second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Zhe Zhang
- Department of Neurosurgery, The Second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - ZiLong Tan
- Department of Neurosurgery, The Second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - XinXian Liu
- Department of Neurosurgery, The Second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - ZeKun Wang
- Department of Neurosurgery, The Second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Xiong
- Department of Neurosurgery, The People's Hospital of Gao an, Yichun, China
| | - XiaoLi Shen
- Department of Neurosurgery, The Second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - XinGen Zhu
- Department of Neurosurgery, The Second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Wang H, Bai C, Dang X, Wang H. MiR-383 sensitizes osteosarcoma cells to bortezomib treatment via down-regulating PSMB5. Mol Biol Rep 2024; 51:170. [PMID: 38252234 DOI: 10.1007/s11033-023-08964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Proteasome inhibition is a promising strategy for cancer therapy. Bortezomib, which primarily targets the chymotrypsin-like activity of PSMB5, has demonstrated efficacy in various tumors. However, there is variable sensitivity to bortezomib, which could be attributed, in part, to variations in the expression of proteasome subunits. METHODS AND RESULTS In this study, we investigated whether miR-383 affects the expression of proteasome subunits in osteosarcoma (OS) cells, and if so, whether OS cells display differential sensitivity to bortezomib concerning miR-383 expression. We detected a decreased miR-383 expression in OS cells and tissues. Then we found a negative correlation between the cytotoxicity of bortezomib and the expression level of the proteasome 20S core particle subunit β5 (PSMB5). Intriguingly, we identified PSMB5 as a direct target of miR-383. Increased expression of miR-383 resulted in decreased PSMB5 expression and increased sensitivity to bortezomib in OS cells. CONCLUSIONS In summary, our findings present the initial comprehensive analysis of the function of miR-383 in OS. The outcomes indicate that miR-383 may augment the anticancer effect of bortezomib through PSMB5 repression, offering a novel therapeutic approach in OS and a fresh pathway for proteasome regulation.
Collapse
Affiliation(s)
- Haifan Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Chuanyi Bai
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Haoyu Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
5
|
Zhang XY, Li Y. PHD-BAH Domain in ASH1L Could Recognize H3K4 Methylation and Regulate the Malignant Behavior of Cholangiocarcinoma. Anticancer Agents Med Chem 2024; 24:1264-1274. [PMID: 39034728 DOI: 10.2174/0118715206312004240712072532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Histone methyltransferase absent, small, or homeotic discs1-like (ASH1L) is composed of su(var)3-9, enhancer of zeste, trithorax (SET) domain, pleckstrin homology domain (PHD) domain, middle (MID) domain, and bromo adjacent homology (BAH) domain. The SET domain of ASH1L is known to mediate mediate H3K36 dimethylation (H3K36me2) modification. However, the specific functions of the PHD-BAH domain remain largely unexplored. This study aimed to explore the biological function of the PHD-BAH domain in ASH1L. METHODS We employed a range of techniques, including a prokaryotic fusion protein expression purification system, pull-down assay, Isothermal Titration Calorimetry (ITC), polymerase chain reaction (PCR), and sitedirected mutagenesis, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-Cas9) gene editing, cell culture experiment, western blot, cell proliferation assay, and cell apoptosis test. RESULTS The PHD-BAH domain in ASH1L preferentially binds to the H3K4me2 peptide over H3K4 monomethylation (H3K4me1) and H3K4 trimethylation (H3K4me3) peptide. Notably, the W2603A mutation within the PHD-BAH domain could disrupt the interaction with H3K4me2 in vitro. Compared with wild-type Cholangiocarcinoma (CHOL) cells, deletion of the PHD-BAH domain in ASH1L led to increased CHOL cell apoptosis and reduced cell proliferation (P < 0.001). Additionally, the W2603A mutation affected the regulation of the proteasome 20S subunit beta (PSMB) family gene set. CONCLUSION W2603A mutation was crucial for the interaction between the PHD-BAH domain and the H3K4me2 peptide. ASH1L regulated CHOL cell survival and proliferation through its PHD-BAH domain by modulating the expression of the PSMB family gene set.
Collapse
Affiliation(s)
- Xiang-Yu Zhang
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yue Li
- External Cooperation Liaison Office, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| |
Collapse
|
6
|
Mardones C, Navarrete-Munoz C, Armijo ME, Salgado K, Rivas-Valdes F, Gonzalez-Pecchi V, Farkas C, Villagra A, Hepp MI. Role of HDAC6-STAT3 in immunomodulatory pathways in Colorectal cancer cells. Mol Immunol 2023; 164:98-111. [PMID: 37992541 DOI: 10.1016/j.molimm.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant neoplasms and the second leading cause of death from tumors worldwide. Therefore, there is a great need to study new therapeutical strategies, such as effective immunotherapies against these malignancies. Unfortunately, many CRC patients do not respond to current standard immunotherapies, making it necessary to search for adjuvant treatments. Histone deacetylase 6 (HDAC6) is involved in several processes, including immune response and tumor progression. Specifically, it has been observed that HDAC6 is required to activate the Signal Transducer and Activator of Transcription 3 (STAT3), a transcription factor involved in immunogenicity, by activating different genes in these pathways, such as PD-L1. Over-expression of immunosuppressive pathways in cancer cells deregulates T-cell activation. Therefore, we focused on the pharmacological inhibition of HDAC6 in CRC cells because of its potential as an adjuvant to avoid immunotolerance in immunotherapy. We investigated whether HDAC6 inhibitors (HDAC6is), such as Nexturastat A (NextA), affected STAT3 activation in CRC cells. First, we found that NextA is less cytotoxic than the non-selective HDACis panobinostat. Then, NextA modified STAT3 and decreased the mRNA and protein expression levels of PD-L1. Importantly, transcriptomic analysis showed that NextA treatment affected the expression of critical genes involved in immunomodulatory pathways in CRC malignancies. These results suggest that treatments with NextA reduce the functionality of STAT3 in CRC cells, impacting the expression of immunomodulatory genes involved in the inflammatory and immune responses. Therefore, targeting HDAC6 may represent an interesting adjuvant strategy in combination with immunotherapy.
Collapse
Affiliation(s)
- C Mardones
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - C Navarrete-Munoz
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - M E Armijo
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - K Salgado
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - F Rivas-Valdes
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | - V Gonzalez-Pecchi
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - C Farkas
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - A Villagra
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, United States
| | - M I Hepp
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile.
| |
Collapse
|
7
|
Matthiesen R, Gameiro P, Henriques A, Bodo C, Moraes MCS, Costa-Silva B, Cabeçadas J, Gomes da Silva M, Beck HC, Carvalho AS. Extracellular Vesicles in Diffuse Large B Cell Lymphoma: Characterization and Diagnostic Potential. Int J Mol Sci 2022; 23:13327. [PMID: 36362114 PMCID: PMC9654702 DOI: 10.3390/ijms232113327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 09/29/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive B cell lymphoma characterized by a heterogeneous behavior and in need of more accurate biological characterization monitoring and prognostic tools. Extracellular vesicles are secreted by all cell types and are currently established to some extent as representatives of the cell of origin. The present study characterized and evaluated the diagnostic and prognostic potential of plasma extracellular vesicles (EVs) proteome in DLBCL by using state-of-the-art mass spectrometry. The EV proteome is strongly affected by DLBCL status, with multiple proteins uniquely identified in the plasma of DLBCL. A proof-of-concept classifier resulted in highly accurate classification with a sensitivity and specificity of 1 when tested on the holdout test data set. On the other hand, no proteins were identified to correlate with non-germinal center B-cell like (non-GCB) or GCB subtypes to a significant degree after correction for multiple testing. However, functional analysis suggested that antigen binding is regulated when comparing non-GCB and GCB. Survival analysis based on protein quantitative values and clinical parameters identified multiple EV proteins as significantly correlated to survival. In conclusion, the plasma extracellular vesicle proteome identifies DLBCL cancer patients from healthy donors and contains potential EV protein markers for prediction of survival.
Collapse
Affiliation(s)
- Rune Matthiesen
- Computational and Experimental Biology Group, NOVA Medical School-Research, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Paula Gameiro
- Instituto Português de Oncologia, Departament of Hematology, 1099-213 Lisbon, Portugal
| | - Andreia Henriques
- Computational and Experimental Biology Group, NOVA Medical School-Research, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Cristian Bodo
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | | | - Bruno Costa-Silva
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - José Cabeçadas
- Instituto Português de Oncologia, Departament of Hematology, 1099-213 Lisbon, Portugal
| | - Maria Gomes da Silva
- Instituto Português de Oncologia, Departament of Hematology, 1099-213 Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, DK-5000 Odense, Denmark
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, NOVA Medical School-Research, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| |
Collapse
|