1
|
Leontieva SV, Kostjukov VV. Theoretical analysis of photosensitization of DNA by thionine. J Mol Model 2024; 30:402. [PMID: 39556260 DOI: 10.1007/s00894-024-06206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
CONTEXT In this work, we are the first to perform a theoretical analysis of photoinduced charge transfer in the intercalation complex of thionine (TH) with double-stranded DNA, which was observed in experiments. Efficient DNA binding and long-wave absorption maximum make TH an attractive photosensitizer. d(CpG)2 tetranucleotide was used as a minimal model DNA fragment. Intercalation of TH between pairs of nucleobases causes the transfer of a small negative charge (0.24 e) from the tetranucleotide to the dye. S0 → S1 photoexcitation of their complex using visible light leads to the transfer in the same direction of a significant negative charge (0.9 e). This electronic transition has a HOMO → LUMO electronic configuration, with HOMO localized on one of the two phosphate groups of the tetranucleotide, and LUMO on TH; the latter has the same shape as the LUMO of free dye. In the complex, TH, by its amino groups, forms two intermolecular H-bonds: with the deoxyribose oxygen atom of one d(CpG)2 strand and with the non-bridging oxygen atom of the phosphate group of the other strand. In this case, the H-bond TH with the phosphate group is stronger than with the sugar, but the charge transfer is carried out from another phosphate group through the sugar to the dye. Thus, charge transfer occurs along the longer of the two paths. However, the path of charge transfer depends on the parameters of the excitation since higher electronic transitions also include the second phosphate group, i.e., a short way is also used. METHODS For the calculations of the excitation of the complex, TD-DFT was used in combination with a set of ten functionals (CAM-B3LYP + D3BJ, ωB97XD, LC-ωHPBE, M052X, M062X, M06HF, M08HX, M11, MN15, and SOGGA11X), which have proven themselves well in modeling the excitation of dimers of aromatic molecules. Of these, LC-ωHPBE, which gave the best agreement with the experiment, was selected for the final calculations. It was used in combination with the 6-31 + + G(d,p) basis set and the IEFPCM solvent model. The photoinduced charge redistribution was quantitatively estimated using natural population analysis, and visually by building the frontier molecular and natural transition orbitals.
Collapse
Affiliation(s)
- Svetlana V Leontieva
- Nakhimov Black Sea Higher Naval School, Dybenko Str., 1a, Crimea, 299028, Sevastopol, Ukraine
| | - Victor V Kostjukov
- Sevastopol State University, Universitetskaya Str., 33, Crimea, 299053, Sevastopol, Ukraine.
| |
Collapse
|
2
|
Masters MR, Mahmoud AH, Yang Y, Lill MA. Efficient and Accurate Hydration Site Profiling for Enclosed Binding Sites. J Chem Inf Model 2018; 58:2183-2188. [PMID: 30289252 DOI: 10.1021/acs.jcim.8b00544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew R. Masters
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Amr H. Mahmoud
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Ying Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Markus A. Lill
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| |
Collapse
|
3
|
Kar RK, Brender JR, Ghosh A, Bhunia A. Nonproductive Binding Modes as a Prominent Feature of Aβ 40 Fiber Elongation: Insights from Molecular Dynamics Simulation. J Chem Inf Model 2018; 58:1576-1586. [PMID: 30047732 DOI: 10.1021/acs.jcim.8b00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The formation of amyloid fibers has been implicated in a number of neurodegenerative diseases. The growth of amyloid fibers is strongly thermodynamically favorable, but kinetic traps exist where the incoming monomer binds in an incompatible conformation that blocks further elongation. Unfortunately, this process is difficult to follow experimentally at the atomic level. It is also too complex to simulate in full detail and to date has been explored either through coarse-grained simulations, which may miss many important interactions, or full atomic simulations, in which the incoming peptide is constrained to be near the ideal fiber geometry. Here we use an alternate approach starting from a docked complex in which the monomer is from an experimental NMR structure of one of the major conformations in the unbound ensemble, a largely unstructured peptide with the central hydrophobic region in a 310 helix. A 1000 ns full atomic simulation in explicit solvent shows the formation of a metastable intermediate by sequential, concerted movements of both the fiber and the monomer. A Markov state model shows that the unfolded monomer is trapped at the end of the fiber in a set of interconverting antiparallel β-hairpin conformations. The simulation here may serve as a model for the binding of other non-β-sheet conformations to amyloid fibers.
Collapse
Affiliation(s)
- Rajiv K Kar
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Jeffrey R Brender
- Radiation Biology Branch , National Institutes of Health , Bethesda , Maryland 20814 , United States
| | - Anirban Ghosh
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Anirban Bhunia
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| |
Collapse
|
4
|
Ross GA, Rustenburg AS, Grinaway PB, Fass J, Chodera JD. Biomolecular Simulations under Realistic Macroscopic Salt Conditions. J Phys Chem B 2018; 122:5466-5486. [PMID: 29649876 PMCID: PMC6078207 DOI: 10.1021/acs.jpcb.7b11734] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomolecular simulations are typically performed in an aqueous environment where the number of ions remains fixed for the duration of the simulation, generally with either a minimally neutralizing ion environment or a number of salt pairs intended to match the macroscopic salt concentration. In contrast, real biomolecules experience local ion environments where the salt concentration is dynamic and may differ from bulk. The degree of salt concentration variability and average deviation from the macroscopic concentration remains, as yet, unknown. Here, we describe the theory and implementation of a Monte Carlo osmostat that can be added to explicit solvent molecular dynamics or Monte Carlo simulations to sample from a semigrand canonical ensemble in which the number of salt pairs fluctuates dynamically during the simulation. The osmostat reproduces the correct equilibrium statistics for a simulation volume that can exchange ions with a large reservoir at a defined macroscopic salt concentration. To achieve useful Monte Carlo acceptance rates, the method makes use of nonequilibrium candidate Monte Carlo (NCMC) moves in which monovalent ions and water molecules are alchemically transmuted using short nonequilibrium trajectories, with a modified Metropolis-Hastings criterion ensuring correct equilibrium statistics for an ( Δμ, N, p, T) ensemble to achieve a ∼1046× boost in acceptance rates. We demonstrate how typical protein (DHFR and the tyrosine kinase Src) and nucleic acid (Drew-Dickerson B-DNA dodecamer) systems exhibit salt concentration distributions that significantly differ from fixed-salt bulk simulations and display fluctuations that are on the same order of magnitude as the average.
Collapse
Affiliation(s)
- Gregory A. Ross
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Present address: Schrödinger, New York, NY 10036
| | - Ariën S. Rustenburg
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Medical College, New York, NY 10065
| | - Patrick B. Grinaway
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Medical College, New York, NY 10065
| | - Josh Fass
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065
| | - John D. Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
5
|
Popov AV, Endutkin AV, Vorobjev YN, Zharkov DO. Molecular dynamics simulation of the opposite-base preference and interactions in the active site of formamidopyrimidine-DNA glycosylase. BMC STRUCTURAL BIOLOGY 2017; 17:5. [PMID: 28482831 PMCID: PMC5422863 DOI: 10.1186/s12900-017-0075-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/20/2017] [Indexed: 01/20/2023]
Abstract
Background Formamidopyrimidine-DNA glycosylase (Fpg) removes abundant pre-mutagenic 8-oxoguanine (oxoG) bases from DNA through nucleophilic attack of its N-terminal proline at C1′ of the damaged nucleotide. Since oxoG efficiently pairs with both C and A, Fpg must excise oxoG from pairs with C but not with A, otherwise a mutation occurs. The crystal structures of several Fpg–DNA complexes have been solved, yet no structure with A opposite the lesion is available. Results Here we use molecular dynamic simulation to model interactions in the pre-catalytic complex of Lactococcus lactis Fpg with DNA containing oxoG opposite C or A, the latter in either syn or anti conformation. The catalytic dyad, Pro1–Glu2, was modeled in all four possible protonation states. Only one transition was observed in the experimental reaction rate pH dependence plots, and Glu2 kept the same set of interactions regardless of its protonation state, suggesting that it does not limit the reaction rate. The adenine base opposite oxoG was highly distorting for the adjacent nucleotides: in the more stable syn models it formed non-canonical bonds with out-of-register nucleotides in both the damaged and the complementary strand, whereas in the anti models the adenine either formed non-canonical bonds or was expelled into the major groove. The side chains of Arg109 and Phe111 that Fpg inserts into DNA to maintain its kinked conformation tended to withdraw from their positions if A was opposite to the lesion. The region showing the largest differences in the dynamics between oxoG:C and oxoG:A substrates was unexpectedly remote from the active site, located near the linker joining the two domains of Fpg. This region was also highly conserved among 124 analyzed Fpg sequences. Three sites trapping water molecules through multiple bonds were identified on the protein–DNA interface, apparently helping to maintain enzyme-induced DNA distortion and participating in oxoG recognition. Conclusion Overall, the discrimination against A opposite to the lesion seems to be due to incorrect DNA distortion around the lesion-containing base pair and, possibly, to gross movement of protein domains connected by the linker. Electronic supplementary material The online version of this article (doi:10.1186/s12900-017-0075-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander V Popov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia
| | - Anton V Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia.,Novosibrsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Yuri N Vorobjev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia. .,Novosibrsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia. .,Novosibrsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| |
Collapse
|
6
|
Pant P, Afshan Shaikh S, Jayaram B. Design and characterization of symmetric nucleic acids via molecular dynamics simulations. Biopolymers 2017; 107. [PMID: 27861723 DOI: 10.1002/bip.23002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022]
Abstract
Asymmetry (5'→3') associated with each strand of the deoxyribonucleic acid (DNA) is inherent in the sugar-phosphate backbone connectivity and is essential for replication and transcription. We note that this asymmetry is due to one single chemical bond (C3' to C2' ) in each nucleotide unit, and the absence of this bond results in directionally symmetric nucleic acids. We also discovered that creation of an extra chemical bond (C5' to C2' ) can lead to a symmetric backbone. Keeping their potential synthetic and therapeutic interest in mind, we designed a few novel symmetric nucleic acids. We investigated their conformational stability and flexibility via detailed all atom explicit solvent 100-ns long molecular dynamics simulations and compared the resulting structures with that of regular B-DNA. Quite interestingly, some of the symmetric nucleic acids retain the overall double helical structure indicating their potential for integration in physiological DNA without causing major structural perturbations.
Collapse
Affiliation(s)
- Pradeep Pant
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.,Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Saher Afshan Shaikh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.,Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - B Jayaram
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.,Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.,Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
7
|
Hoppins JJ, Gruber DR, Miears HL, Kiryutin AS, Kasymov RD, Petrova DV, Endutkin AV, Popov AV, Yurkovskaya AV, Fedechkin SO, Brockerman JA, Zharkov DO, Smirnov SL. 8-Oxoguanine Affects DNA Backbone Conformation in the EcoRI Recognition Site and Inhibits Its Cleavage by the Enzyme. PLoS One 2016; 11:e0164424. [PMID: 27749894 PMCID: PMC5066940 DOI: 10.1371/journal.pone.0164424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022] Open
Abstract
8-oxoguanine is one of the most abundant and impactful oxidative DNA lesions. However, the reasons underlying its effects, especially those not directly explained by the altered base pairing ability, are poorly understood. We report the effect of the lesion on the action of EcoRI, a widely used restriction endonuclease. Introduction of 8-oxoguanine inside, or adjacent to, the GAATTC recognition site embedded within the Drew—Dickerson dodecamer sequence notably reduced the EcoRI activity. Solution NMR revealed that 8-oxoguanine in the DNA duplex causes substantial alterations in the sugar—phosphate backbone conformation, inducing a BI→BII transition. Moreover, molecular dynamics of the complex suggested that 8-oxoguanine, although does not disrupt the sequence-specific contacts formed by the enzyme with DNA, shifts the distribution of BI/BII backbone conformers. Based on our data, we propose that the disruption of enzymatic cleavage can be linked with the altered backbone conformation and dynamics in the free oxidized DNA substrate and, possibly, at the protein—DNA interface.
Collapse
Affiliation(s)
- Joanna J. Hoppins
- Chemistry Department, Western Washington University, Bellingham, WA, United States of America
| | - David R. Gruber
- Chemistry Department, Western Washington University, Bellingham, WA, United States of America
| | - Heather L. Miears
- Chemistry Department, Western Washington University, Bellingham, WA, United States of America
| | - Alexey S. Kiryutin
- SB RAS International Tomography Center, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Rustem D. Kasymov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Institute of Biochemistry, Stuttgart University, Stuttgart, Germany
| | - Darya V. Petrova
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Anton V. Endutkin
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Alexander V. Popov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Alexandra V. Yurkovskaya
- SB RAS International Tomography Center, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Stanislav O. Fedechkin
- Chemistry Department, Western Washington University, Bellingham, WA, United States of America
- University of California Santa Cruz, Program in Biomedical Science and Engineering, Santa Cruz, CA, United States of America
| | - Jacob A. Brockerman
- Chemistry Department, Western Washington University, Bellingham, WA, United States of America
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Dmitry O. Zharkov
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- * E-mail: (SLS); (DOZ)
| | - Serge L. Smirnov
- Chemistry Department, Western Washington University, Bellingham, WA, United States of America
- * E-mail: (SLS); (DOZ)
| |
Collapse
|
8
|
Kostyukov VV, Khomutova NM, Evstigneev MP. Contribution of enthalpy to the energetics of complex formation of aromatic ligands with DNA. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911040117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Kostjukov V, Pahomov V, Andrejuk D, Davies D, Evstigneev M. Investigation of the complexation of the anti-cancer drug novantrone with the hairpin structure of the deoxyheptanucleotide 5′-d(GpCpGpApApGpC). J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2006.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
|
11
|
Abstract
Molecular dynamics simulations on DNA and RNA that include solvent are now being performed under realistic environmental conditions of water activity and salt. Improvements to force-fields and treatments of long-range interactions have significantly increased the reliability of simulations. New studies of sequence effects, axis bending, solvation and conformational transitions have appeared.
Collapse
Affiliation(s)
- D L Beveridge
- Chemistry Department, Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA.
| | | |
Collapse
|
12
|
Langley DR. Molecular dynamic simulations of environment and sequence dependent DNA conformations: the development of the BMS nucleic acid force field and comparison with experimental results. J Biomol Struct Dyn 1998; 16:487-509. [PMID: 10052609 DOI: 10.1080/07391102.1998.10508265] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Molecular dynamic (MD) simulations using the BMS nucleic acid force field produce environment and sequence dependent DNA conformations that closely mimic experimentally derived structures. The parameters were initially developed to reproduce the potential energy surface, as defined by quantum mechanics, for a set of small molecules that can be used as the building blocks for nucleic acid macromolecules (dimethyl phosphate, cyclopentane, tetrahydrofuran, etc.). Then the dihedral parameters were fine tuned using a series of condensed phase MD simulations of DNA and RNA (in zero added salt, 4M NaCl, and 75% ethanol solutions). In the tuning process the free energy surface for each dihedral was derived from the MD ensemble and fitted to the conformational distributions and populations observed in 87 A- and B-DNA x-ray and 17 B-DNA NMR structures. Over 41 nanoseconds of MD simulations are presented which demonstrate that the force field is capable of producing stable trajectories, in the correct environments, of A-DNA, double stranded A-form RNA, B-DNA, Z-DNA, and a netropsin-DNA complex that closely reproduce the experimentally determined and/or canonical DNA conformations. Frequently the MD averaged structure is closer to the experimentally determined structure than to the canonical DNA conformation. MD simulations of A- to B- and B- to A-DNA transitions are also shown. A-DNA simulations in a low salt environment cleanly convert into the B-DNA conformation and converge into the RMS space sampled by a low salt simulation of the same sequence starting from B-DNA. In MD simulations using the BMS force field the B-form of d(GGGCCC)2 in a 75% ethanol solution converts into the A-form. Using the same methodology, parameters, and conditions the A-form of d(AAATTT)2 correctly converts into the B-DNA conformation. These studies demonstrate that the force field is capable of reproducing both environment and sequence dependent DNA structures. The 41 nanoseconds (nsec) of MD simulations presented in this paper paint a global picture which suggests that the DNA structures observed in low salt solutions are largely due to the favorable internal energy brought about by the nearly uniform screening of the DNA electrostatics. While the conformations sampled in high salt or mixed solvent environments occur from selective and asymmetric screening of the phosphate groups and DNA grooves, respectively, brought about by sequence induced ion and solvent packing.
Collapse
Affiliation(s)
- D R Langley
- Bristol-Myers Squibb Company, Pharmaceutical Research Institute, Wallingford, CT 06492-7660, USA.
| |
Collapse
|
13
|
Abstract
We have recently indicated preliminary evidence of different equilibrium average structures with the CHARMM and AMBER force fields in explicit solvent molecular dynamics simulations on the DNA duplex d(C5T5) . d(A5G5) (Feig, M. and B.M. Pettitt, 1997, Experiment vs. Force Fields: DNA conformation from molecular dynamics simulations. J. Phys. Chem. B. (101:7361-7363). This paper presents a detailed comparison of DNA structure and dynamics for both force fields from extended simulation times of 10 ns each. Average structures display an A-DNA base geometry with the CHARMM force field and a base geometry that is intermediate between A- and B-DNA with the AMBER force field. The backbone assumes B form on both strands with the AMBER force field, while the CHARMM force field produces heterogeneous structures with the purine strand in A form and the pyrimidine strand in dynamical equilibrium between A and B conformations. The results compare well with experimental data for the cytosine/guanine part but fail to fully reproduce an overall B conformation in the thymine/adenine tract expected from crystallographic data, particularly with the CHARMM force field. Fluctuations between A and B conformations are observed on the nanosecond time scale in both simulations, particularly with the AMBER force field. Different dynamical behavior during the first 4 ns indicates that convergence times of several nanoseconds are necessary to fully establish a dynamical equilibrium in all structural quantities on the time scale of the simulations presented here.
Collapse
Affiliation(s)
- M Feig
- Department of Chemistry, University of Houston, Houston, Texas 77204-5641 USA
| | | |
Collapse
|