1
|
Perna G, Alessandra A, Raffaele B, Elisa M, Giuseppina D, Paolo C, Maria N, Daniela C. Is There Room for Second-Generation Antipsychotics in the Pharmacotherapy of Panic Disorder? A Systematic Review Based on PRISMA Guidelines. Int J Mol Sci 2016; 17:551. [PMID: 27089322 PMCID: PMC4849007 DOI: 10.3390/ijms17040551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 12/17/2022] Open
Abstract
A role for second-generation antipsychotics (SGAs) in the treatment of panic disorders (PD) has been proposed, but the actual usefulness of SGAs in this disorder is unclear. According to the PRISMA guidelines, we undertook an updated systematic review of all of the studies that have examined, in randomized controlled trials, the efficacy and tolerability of SGAs (as either monotherapy or augmentation) in the treatment of PD, with or without other comorbid psychiatric disorders. Studies until 31 December 2015 were identified through PubMed, PsycINFO, Embase, Cochrane Library and Clinical trials.gov. Among 210 studies, five were included (two involving patients with a principal diagnosis of PD and three involving patients with bipolar disorder with comorbid PD or generalized anxiety disorder). All were eight-week trials and involved treatments with quetiapine extended release, risperidone and ziprasidone. Overall, a general lack of efficacy of SGAs on panic symptoms was observed. Some preliminary indications of the antipanic effectiveness of risperidone are insufficient to support its use in PD, primarily due to major limitations of the study. However, several methodological limitations may have negatively affected all of these studies, decreasing the validity of the results and making it difficult to draw reliable conclusions. Except for ziprasidone, SGAs were well tolerated in these short-term trials.
Collapse
Affiliation(s)
- Giampaolo Perna
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi, via Roma 16, Albese con Cassano, 22032 Como, Italy.
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 Maastricht, The Netherlands.
- Department of Psychiatry and Behavioral Sciences, Leonard Miller School of Medicine, Miami University, Miami, FL 33136, USA.
| | - Alciati Alessandra
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi, via Roma 16, Albese con Cassano, 22032 Como, Italy.
| | - Balletta Raffaele
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi, via Roma 16, Albese con Cassano, 22032 Como, Italy.
| | - Mingotto Elisa
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi, via Roma 16, Albese con Cassano, 22032 Como, Italy.
| | - Diaferia Giuseppina
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi, via Roma 16, Albese con Cassano, 22032 Como, Italy.
| | - Cavedini Paolo
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi, via Roma 16, Albese con Cassano, 22032 Como, Italy.
| | - Nobile Maria
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi, via Roma 16, Albese con Cassano, 22032 Como, Italy.
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, 23842 Lecco, Italy.
| | - Caldirola Daniela
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi, via Roma 16, Albese con Cassano, 22032 Como, Italy.
| |
Collapse
|
2
|
Gonzalez-Usano A, Cauli O, Agusti A, Felipo V. Pregnenolone sulfate restores the glutamate-nitric-oxide-cGMP pathway and extracellular GABA in cerebellum and learning and motor coordination in hyperammonemic rats. ACS Chem Neurosci 2014; 5:100-5. [PMID: 24256194 PMCID: PMC3930995 DOI: 10.1021/cn400168y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/19/2013] [Indexed: 12/21/2022] Open
Abstract
Around 40% of cirrhotic patients show minimal hepatic encephalopathy (MHE), with mild cognitive impairment which reduces their quality of life and life span. Treatment of MHE is unsatisfactory, and there are no specific treatments for the neurological alterations in MHE. Hyperammonemia is the main contributor to neurological alterations in MHE. New agents acting on molecular targets involved in brain mechanisms leading to neurological alterations are needed to treat MHE. Chronic hyperammonemia impairs learning of a Y-maze task by impairing the glutamate-nitric-oxide (NO)-cGMP pathway in cerebellum, in part by enhancing GABA(A) receptor activation, which also induces motor in-coordination. Acute pregnenolone sulfate (PregS) restores the glutamate-NO-cGMP pathway in hyperammonemic rats. This work aimed to assess whether chronic treatment of hyperammonemic rats with PregS restores (1) motor coordination; (2) extracellular GABA in cerebellum; (3) learning of the Y-maze task; (4) the glutamate-NO-cGMP pathway in cerebellum. Chronic intracerebral administration of PregS normalizes motor coordination likely due to extracellular GABA reduction. PregS restores learning ability by restoring the glutamate-NO-cGMP pathway, likely due to both enhanced NMDA receptor activation and reduced GABA(A) receptor activation. Similar treatments would improve cognitive and motor alterations in patients with MHE.
Collapse
Affiliation(s)
- Alba Gonzalez-Usano
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Omar Cauli
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Ana Agusti
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia 46012, Spain
| |
Collapse
|
3
|
Sofuoglu M, Mouratidis M, Mooney M. Progesterone improves cognitive performance and attenuates smoking urges in abstinent smokers. Psychoneuroendocrinology 2011; 36:123-32. [PMID: 20675057 PMCID: PMC2987547 DOI: 10.1016/j.psyneuen.2010.07.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 01/08/2023]
Abstract
BACKGROUND Progesterone, a steroid hormone, has been implicated in many CNS functions including reward, cognition, and neuroprotection. The goal of this study was to examine the dose-dependent effects of progesterone on cognitive performance, smoking urges, and smoking behavior in smokers. METHODS Thirty female and thirty-four male smokers participated in a double-blind, placebo-controlled study. Female smokers were in the early follicular phase of their menstrual cycle during study participation. Smokers were randomly assigned to either 200 or 400mg/day of progesterone or placebo, given in two separate doses, during clinic visit. The first 3 days of the treatment period, smokers abstained from smoking, which was verified with breath CO levels. Smokers attended an experimental session on day 4 where the number of cigarettes smoked were recorded starting 2h after the medication treatment. RESULTS Progesterone treatment, 200mg/day, significantly improved cognitive performance in the Stroop and the Digit Symbol Substitution Test. Progesterone at 400mg/day was associated with reduced urges for smoking but did not change ad lib smoking behavior. CONCLUSIONS These findings suggest a potential therapeutic value of progesterone for smoking cessation.
Collapse
Affiliation(s)
- Mehmet Sofuoglu
- Yale University, School of Medicine, Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA.
| | | | | |
Collapse
|
4
|
Sun T, He W, Hu G, Li M. Anxiolytic-like property of risperidone and olanzapine as examined in multiple measures of fear in rats. Pharmacol Biochem Behav 2010; 95:298-307. [PMID: 20167232 DOI: 10.1016/j.pbb.2010.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/05/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
Abstract
Atypical antipsychotics are also used in the treatment of anxiety-related disorders. Clinical and preclinical evidence regarding their intrinsic anxiolytic efficacy has been mixed. In this study, we examined the potential anxiolytic-like effects of risperidone and olanzapine, and compared them with haloperidol, chlordiazepoxide (a prototype of sedative-anxiolytic drug) or citalopram (a selective serotonin reuptake inhibitor). We used a composite of two-way avoidance conditioning and acoustic startle reflex model and examined the effects of drug treatments during the acquisition phase (Experiment 1) or extinction phase (Experiments 2 and 3) on multiple measures of conditioned and unconditioned fear/anxiety-like responses. In Experiment 4, we further compared risperidone, olanzapine, haloperidol, citalopram and chlordiazepoxide in a standard elevated plus maze test. Results revealed three distinct anxiolytic-like profiles associated with risperidone, olanzapine and chlordiazepoxide. Risperidone, especially at 1.0mg/kg, significantly decreased the number of avoidance responses, 22kHz ultrasonic vocalization, avoidance conditioning-induced hyperthermia and startle reactivity, but did not affect defecations or time spent on the open arms. Olanzapine (2.0mg/kg, sc) significantly decreased the number of avoidance responses, 22kHz vocalization and amount of defecations, but it did not inhibit startle reactivity and time spent on the open arms. Chlordiazepoxide (10mg/kg, ip) significantly decreased the number of 22kHz vocalization, avoidance conditioning-induced hyperthermia and amount of defecations, and increased time spent on the open arms, but did not decrease avoidance responses or startle reactivity. Haloperidol and citalopram did not display any anxiolytic-like property in these tests. The results highlight the importance of using multiple measures of fear-related responses to delineate behavioral profiles of psychotherapeutic drugs.
Collapse
Affiliation(s)
- Tao Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, China
| | | | | | | |
Collapse
|
5
|
Mead A, Li M, Kapur S. Clozapine and olanzapine exhibit an intrinsic anxiolytic property in two conditioned fear paradigms: contrast with haloperidol and chlordiazepoxide. Pharmacol Biochem Behav 2008; 90:551-62. [PMID: 18547622 DOI: 10.1016/j.pbb.2008.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/14/2008] [Accepted: 04/24/2008] [Indexed: 10/22/2022]
Abstract
Psychotic fear and anxiety disturbances are seen at a relatively high frequency in patients with schizophrenia. Atypical anti-psychotics are believed to show superior efficacy in reducing these symptoms. However, clinical and preclinical evidence regarding their anxiolytic efficacy has been mixed. In this study, we evaluated the possible anxiolytic property of two atypicals clozapine and olanzapine and compared them with typical haloperidol and chlordiazepoxide (a prototype of sedative-anxiolytic drug) in two preclinical models of fear. In Experiment 1, we used a fear-induced passive avoidance and conditioned place aversion paradigm and examined the effects of clozapine (20 mg/kg, sc), haloperidol (0.05 mg/kg, sc) and chlordiazepoxide (10 mg/ kg, ip). In Experiments 2 and 3, we used a two-way active avoidance conditioning paradigm and further compared the effects of clozapine (20 mg/kg, sc), haloperidol (0.05 mg/kg, sc), chlordiazepoxide (10 mg/kg, ip) and three doses of olanzapine (0.5, 1.0, and 2.0 mg/kg, sc). Results show that clozapine and chlordiazepoxide, but not haloperidol, significantly attenuated the shock conditioning-induced place aversion, decreased the amount of defecations and the number of the 22-kHz vocalizations. Clozapine also reduced the shock conditioning-induced hyperthermia. Similar to clozapine, olanzapine also significantly decreased the amount of defecations and reduced the shock conditioning-induced hyperthermia, but it did not inhibit the 22-kHz vocalizations. This study demonstrates that clozapine and olanzapine possess an intrinsic anxiolytic property, which is not attributable to its superior anti-"psychotic" effect or its favorable effects on motor functions or learning and memory processes. These findings also suggest that the combined use of passive avoidance and active avoidance conditioning models can be useful in better differentiating typical and atypical anti-psychotics as well as anxiolytics.
Collapse
Affiliation(s)
- Alexa Mead
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 685888, USA
| | | | | |
Collapse
|
6
|
Abstract
Neurosteroids regulate neuronal excitability and are expressed at particularly high levels in the CNS during the perinatal period. Further, neurosteroid levels are increased by a variety of stressors including hypoxia, asphyxia, parturition, ethanol exposure and infection. One mechanism by which neurosteroids regulate neuronal activity is by negative or positive modulation of GABA(A) receptor function. Perinatal respiration is strongly modulated by GABAergic synaptic drive, and GABA release is increased during hypoxia to contribute to hypoxia-induced depression of neonatal ventilation. Here, we use in vitro and in vivo rat models to test the hypothesis that GABA(A) receptor-mediated modulation of perinatal respiration is markedly influenced by the presence of neurosteroids. The principal finding of this study was that the efficacy of GABA(A) receptor-mediated modulation of respiratory membrane potential and rhythmogenesis is markedly enhanced by allopregnanolone and depressed by dehydroepiandrosterone sulphate. These data demonstrate that the modulation of breathing via GABA(A) receptor activation will be determined by the overall balance of negative and positive neurosteroid modulators within respiratory nuclei. This adds a level of complexity that must be considered when examining the depression of breathing in mammals associated with various behavioural states and pathogenic conditions such as apnoea and sudden death suspected to be associated with central respiratory dysfunction.
Collapse
Affiliation(s)
- Jun Ren
- Department of Physiology, Division of Neuroscience, 513 HMRC, University of Alberta, Edmonton Alberta, Canada T6G 2S2
| | | |
Collapse
|
7
|
Abstract
The neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone) facilitates GABA(A) receptor-mediated ionic currents via allosteric modulation of the GABA(A) receptor. Accordingly, allopregnanolone caused an increase in the slow decay time constant of spontaneous GABA-mediated IPSCs in magnocellular neurons recorded in hypothalamic slices. The allopregnanolone effect on IPSCs was inhibited by a G-protein antagonist as well as by blocking protein kinase C and, to a lesser extent, cAMP-dependent protein kinase activities. G-protein and protein kinase C activation in the absence of the neurosteroid had no effect on spontaneous IPSCs but enhanced the effect of subsequent allopregnanolone application. These findings together suggest that the neurosteroid modulation of GABA-mediated IPSCs requires G-protein and protein kinase activation, although not via a separate G-protein-coupled steroid receptor.
Collapse
|
8
|
Cooper EJ, Johnston GA, Edwards FA. Effects of a naturally occurring neurosteroid on GABAA IPSCs during development in rat hippocampal or cerebellar slices. J Physiol 1999; 521 Pt 2:437-49. [PMID: 10581314 PMCID: PMC2269661 DOI: 10.1111/j.1469-7793.1999.00437.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The effects of the naturally occurring neurosteroid tetrahydrodeoxycorticosterone (THDOC) on GABAA receptor-mediated miniature, spontaneous and evoked IPSCs was tested using patch-clamp techniques in slices of hippocampus and cerebellum from rats at two developmental stages ( approximately 10 and approximately 20 days postnatal). The cells studied were hippocampal granule cells and cerebellar Purkinje and granule cells. 2. Most miniature GABAergic currents (mIPSCs) decayed with two exponentials and neurosteroids caused a approximately 4-fold increase in the decay time constant of the second exponential at the highest concentration used (2 microM). Similar effects were seen at high concentrations of THDOC (1-2 microM) in all cell groups tested. No effects were seen on amplitude or rise time of mIPSCs. 3. The effects of THDOC (1 microM) were shown to be stereoselective and rapidly reversible, indicating that the neurosteroid binds to the GABAA receptor, rather than acting genomically. 4. At concentrations of THDOC likely to occur physiologically (50-100 nM), the decay time of IPSCs was also enhanced (25-50 %) in all cerebellar cell groups tested. In contrast, at 100 nM THDOC, seven of 11 hippocampal granule cells were sensitive from the 10 day group but the 20 day hippocampal granule cells showed no significant enhancement in the presence of these lower concentrations of THDOC. 5. The differences in sensitivity of hippocampal and cerebellar cells to THDOC are compared to data reported in the literature on regional development of expression of different receptor subunits in the brain and it is suggested that the progressive relative insensitivity of the 20 day hippocampal cells may depend on increasing expression of the delta subunit of the GABAA receptor and possibly an increase in the alpha4 subunit.
Collapse
Affiliation(s)
- E J Cooper
- Department of Pharmacology, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
9
|
Wetzel CH, Vedder H, Holsboer F, Zieglgänsberger W, Deisz RA. Bidirectional effects of the neuroactive steroid tetrahydrodeoxycorticosterone on GABA-activated Cl- currents in cultured rat hypothalamic neurons. Br J Pharmacol 1999; 127:863-8. [PMID: 10433492 PMCID: PMC1566083 DOI: 10.1038/sj.bjp.0702597] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1998] [Revised: 03/11/1999] [Accepted: 03/17/1999] [Indexed: 11/08/2022] Open
Abstract
1. The non-genomic effects of tetrahydrodeoxycorticosterone (THDOC; 5-alpha-pregnane-3-alpha, 21-diol-20-one) were studied in cultured hypothalamic neurons of the rat. 2. The effects of THDOC (10 nM - 1 microM) on responses to different concentrations of exogenously applied GABA and on spontaneous inhibitory postsynaptic currents (IPSCs) were measured with whole-cell voltage clamp recordings. 3. Application of GABA induced inward currents with dose-dependently increasing amplitudes (up to 3.9 nA at a holding potential of -20 mV). High doses of THDOC (100 nM-1 microM) induced small inward currents on its own (14+/-3 and 24+/-3 pA, respectively). 4. Simultaneous application of 10 microM GABA with 100 nM or 1 microM THDOC increased current amplitudes by 125 and 128%, respectively. At 10 nM THDOC exerted no consistent effects on GABA currents. 5. Responses to 1 microM of GABA were modulated in a bidirectional manner by different doses of THDOC: 10 nM THDOC reduced the amplitude of GABA responses to 80% (P=0.018, n=15), whereas 100 nM and 1 microM THDOC enhanced the GABA response to 115 and 180% (P=0.0007, n = 15), respectively. 6. The time constant of decay of spontaneous inhibitory postsynaptic currents (IPSCs) was reversibly increased from 91+/-10 to 314+/-34 ms (n=3) by the application of THDOC (1 microM). The amplitudes of the IPSCs were not affected by THDOC. 7. These data indicate that THDOC modulates GABA responses of hypothalamic neurons in a bidirectional manner, resulting in a complex tuning of neuronal excitability in the hypothalamus.
Collapse
Affiliation(s)
- C H Wetzel
- Max-Planck-Institute of Psychiatry, Clinical Institute, Munich, Germany
| | | | | | | | | |
Collapse
|
10
|
Katay L, Latzkovits L, Fonagy A, Janka Z, Lajtha A. Effects of arginine vasopressin and atriopeptin on chloride uptake in cultured astroglia. Neurochem Res 1998; 23:831-6. [PMID: 9572671 DOI: 10.1023/a:1022450726625] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ion and water homeostasis in the CNS is subjected to a neuroendocrine control exerted by neuropeptides formed within the brain. In order to gain information on this neuroendocrine control of Cl- homeostasis, 36Cl- uptake was measured in cultured Type-I astrocytes exposed to the neuropeptides [Arg8]Vasopressin (AVP), and atriopeptin (AP) and to various Cl- transport modifiers. AVP increased while AP decreased 36Cl- uptake of cultured astrocytes in a dose-dependent manner. Both effects became statistically significant at greater than 10(-9) M concentration of the peptides. For the appearance of the effects at least 30-min exposure was necessary. AVP and AP extinguished each other's effect by almost stochiometric manner. When administered together with AVP, the VIA vasopressin receptor antagonist "Manning compound" inhibited, while V2 vasopressin receptor agonist did not influence the 36Cl- uptake-increasing effect of AVP. However, bumetanide, a specific inhibitor of Na+-K+-2Cl- cotransport, inhibited the effect of vasopressin and also inhibited the 36Cl- uptake of AVP non-treated, control cells. Our findings suggest that brain Cl- homeostasis is controlled by neuroendocrine system in the CNS.
Collapse
Affiliation(s)
- L Katay
- Department of Neurology and Psychiatry, Albert Szent-Gyorgyi Medical University, Szeged, Hungary
| | | | | | | | | |
Collapse
|
11
|
Lucion AB, Charchat H, Pereira GA, Rasia-Filho AA. Influence of early postnatal gonadal hormones on anxiety in adult male rats. Physiol Behav 1996; 60:1419-23. [PMID: 8946485 DOI: 10.1016/s0031-9384(96)00246-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Behavioral sex differences have been linked to the presence of testosterone secretion during a critical perinatal period. The present experiment tested whether or not castration at different ages (early postnatal period and adulthood) would alter performance in the plus maze, a behavioral test of anxiety. Intact adult male rats (n = 17) were compared to intact adult females (n = 17); adult castrated males (n = 7) to sham-operated adult male rats (n = 9); and newborn castrated males (n = 7) to sham-operated male offspring (n = 8). When adult, the subjects were left on an elevated plus maze for 5 min. Females made a higher percentage of entries onto the open arms and showed a greater number of scans over the edge of an open arm than males. There were no differences in the percentage of arm entries or time spent on the open arms when adult castrated males were compared to sham-operated rats. On the other hand, newborn castrated males showed a significantly higher number of open arm entries and spent a greater percentage of time on the open arms than sham-operated offspring. The results demonstrate that the absence of male gonadal hormones during the perinatal period decreases anxiety, as assessed in the elevated plus maze, leading to a behavioral pattern that resembles that of females. These data provide evidence for the organizational role of gonadal hormones in the development of behavioral inhibitory systems.
Collapse
Affiliation(s)
- A B Lucion
- Department of Physiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | |
Collapse
|