1
|
Jurado-Bruggeman D, Angerud A, Fredriksson A, Muñoz-Montplet C. On the PTV homogeneity objective in the era of photon advanced dose calculation algorithms: Bridging robust and PTV-based planning. Radiother Oncol 2025; 207:110878. [PMID: 40189149 DOI: 10.1016/j.radonc.2025.110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/14/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
AIM The planning target volume (PTV) homogeneity objective was developed for previous-generation dose calculation algorithms. Advanced algorithms report doses to medium-in-medium (Dm,m) and their values depend on the medium considered, breaking the link between uniform irradiation and dose homogeneity. This work revises the PTV homogeneity objective when high-density heterogeneities are involved. We evaluated robust against PTV-based planning, and a dose reporting method that removes composition dependencies to express doses to muscle in muscle-like medium (Dmuscle,muscle*). METHODS Four cases featuring bone or metal within the PTV were selected and planned in RayStation with Monte Carlo. Three plans were created for each case: robust optimization for Dm,m (Robust-Dm,m), and PTV-based optimization for Dm,m (PTV-Dm,m) and Dmuscle,muscle* (PTV-Dmuscle,muscle*). The plans were reported in Dm,m and Dmuscle,muscle*, and their dosimetric parameters, robustness, complexities, and optimization times were assessed. RESULTS Robust-Dm,m and PTV-Dmuscle,muscle* plans presented similar Dm,m distributions with inhomogeneous PTV doses due to cold spots in high-density regions. PTV-Dm,m plans achieved homogeneous PTV doses but required local fluence compensations that impaired robustness, with significant hot spots, and increased complexity. Robust optimization was 7 to 11 times slower. Reporting in Dmuscle,muscle* restored consistency between PTV-based and robust evaluations. CONCLUSIONS Robust optimization proves that PTV homogeneity should not be prioritized when advanced algorithms reporting Dm,m are used with high-density heterogeneities. PTV-Dmuscle,muscle* optimization offers a practical alternative for maintaining PTV-based planning and the PTV homogeneity objective while ensuring consistency with robust optimization. Dmuscle,muscle* reporting simplifies plan evaluation and aligns with clinical practice, facilitating decision-making in treatment planning.
Collapse
Affiliation(s)
- Diego Jurado-Bruggeman
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Girona, Spain; Radiation Oncology and Medical Physics of Girona Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| | | | | | - Carles Muñoz-Montplet
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Girona, Spain; Radiation Oncology and Medical Physics of Girona Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
2
|
Miyasaka Y, Lee SH, Souda H, Chai H, Ishizawa M, Ono T, Ono T, Sato H, Iwai T. Investigation of factors related to treatment planning of x-ray SBRT and scanning carbon-ion radiation therapy for early-stage lung cancer patients. J Appl Clin Med Phys 2025; 26:e14618. [PMID: 39935298 PMCID: PMC11969111 DOI: 10.1002/acm2.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/25/2024] [Accepted: 12/01/2024] [Indexed: 02/13/2025] Open
Abstract
This study aimed to compare the treatment plans of x-ray SBRT and scanning carbon ion radiation therapy (CIRT) for localized lung tumors, and to evaluate the dose dependence of tumor size tumor-to-heart distance. For phantom verification, we used a chest phantom with a spherical simulated tumor. Treatment plans for 3-dimensional conformal radiation therapy (3D-CRT), volumetric modulated arc therapy (VMAT), and CIRT were created. GTVs were created in sizes ranging from 0.5 to 5 cm in diameter, and the dependence of the lung dose on GTV diameter was evaluated for each treatment plan. For patient validation, 30 cases of localized lung tumors were analyzed. 3D-CRT, VMAT, and CIRT treatment plans were developed, and DVH parameters were evaluated for each GTV size and GTV-to-heart distance. In both phantom and patient validations, the OAR doses were the lowest for CIRT. The lung dose increased with increasing GTV diameter for all three treatment plans. CIRT had the smallest ratio of lung dose increase to GTV diameter increase among the three treatment plans. Heart dose in CIRT was independent of GTV size and GTV-to-heart distance Conclusions: The results of the present study suggested that the use of scanning CIRT can reduce the OAR dose while guaranteeing the tumor dose compared to x-ray SBRT. In addition, it was suggested that CIRT can treat patients with large GTV sizes while maintaining low lung and heart dose.
Collapse
Affiliation(s)
- Yuya Miyasaka
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Sung Hyun Lee
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Hikaru Souda
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Hongbo Chai
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Miyu Ishizawa
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Takuya Ono
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Takashi Ono
- Department of RadiologyYamagata University Faculty of MedicineYamagataJapan
| | - Hiraku Sato
- Department of RadiologyYamagata University Faculty of MedicineYamagataJapan
| | - Takeo Iwai
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| |
Collapse
|
3
|
Sevilla-Moreno AC, Puerta-Yepes ME, Wahl N, Benito-Herce R, Cabal-Arango G. Interval Analysis-Based Optimization: A Robust Model for Intensity-Modulated Radiotherapy (IMRT). Cancers (Basel) 2025; 17:504. [PMID: 39941871 PMCID: PMC11816179 DOI: 10.3390/cancers17030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Cancer remains one of the leading causes of mortality worldwide, with radiotherapy playing a crucial role in its treatment. Intensity-modulated radiotherapy (IMRT) enables precise dose delivery to tumors while sparing healthy tissues. However, geometric uncertainties such as patient positioning errors and anatomical deformations can compromise treatment accuracy. Traditional methods use safety margins, which may lead to excessive irradiation of healthy organs or insufficient tumor coverage. Robust optimization techniques, such as minimax approaches, attempt to address these uncertainties but can result in overly conservative treatment plans. This study introduces an interval analysis-based optimization model for IMRT, offering a more flexible approach to uncertainty management. Methods: The proposed model represents geometric uncertainties using interval dose influence matrices and incorporates Bertoluzza's metric to balance tumor coverage and organ-at-risk (OAR) protection. The θ parameter allows controlled robustness modulation. The model was implemented in matRad, an open-source treatment planning system, and evaluated on five prostate cancer cases. Results were compared against traditional Planning Target Volume (PTV) and minimax robust optimization approaches. Results: The interval-based model improved tumor coverage by 5.8% while reducing bladder dose by 4.2% compared to PTV. In contrast, minimax robust optimization improved tumor coverage by 25.8% but increased bladder dose by 23.2%. The interval-based approach provided a better balance between tumor coverage and OAR protection, demonstrating its potential to enhance treatment effectiveness without excessive conservatism. Conclusions: This study presents a novel framework for IMRT planning that improves uncertainty management through interval analysis. By allowing adjustable robustness modulation, the proposed model enables more personalized and clinically adaptable treatment plans. These findings highlight the potential of interval analysis as a powerful tool for optimizing radiotherapy outcomes, balancing treatment efficacy and patient safety.
Collapse
Affiliation(s)
| | | | - Niklas Wahl
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Rafael Benito-Herce
- Digital Health and Biomedical Technologies, Vicomtech Foundation, 20009 San Sebastian, Spain;
| | | |
Collapse
|
4
|
Fink TL, Kristiansen C, Hansen TS, Hansen TF, Thing RS. Robust optimization of the Gross Tumor Volume compared to conventional Planning Target Volume-based planning in photon Stereotactic Body Radiation Therapy of lung tumors. Acta Oncol 2024; 63:448-455. [PMID: 38899392 PMCID: PMC11332535 DOI: 10.2340/1651-226x.2024.40049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Robust optimization has been suggested as an approach to reduce the irradiated volume in lung Stereotactic Body Radiation Therapy (SBRT). We performed a retrospective planning study to investigate the potential benefits over Planning Target Volume (PTV)-based planning. MATERIAL AND METHODS Thirty-nine patients had additional plans using robust optimization with 5-mm isocenter shifts of the Gross Tumor Volume (GTV) created in addition to the PTV-based plan used for treatment. The optimization included the mid-position phase and the extreme breathing phases of the 4D-CT planning scan. The plans were compared for tumor coverage, isodose volumes, and doses to Organs At Risk (OAR). Additionally, we evaluated both plans with respect to observed tumor motion using the peak tumor motion seen on the planning scan and cone-beam CTs. RESULTS Statistically significant reductions in irradiated isodose volumes and doses to OAR were achieved with robust optimization, while preserving tumor dose. The reductions were largest for the low-dose volumes and reductions up to 188 ccm was observed. The robust evaluation based on observed peak tumor motion showed comparable target doses between the two planning methods. Accumulated mean GTV-dose was increased by a median of 4.46 Gy and a non-significant increase of 100 Monitor Units (MU) was seen in the robust optimized plans. INTERPRETATION The robust plans required more time to prepare, and while it might not be a feasible planning strategy for all lung SBRT patients, we suggest it might be useful for selected patients.
Collapse
Affiliation(s)
- Thomas L Fink
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark; Institute for Regional Health Research, University of Southern Denmark, Odense M, Denmark.
| | - Charlotte Kristiansen
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Torben S Hansen
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Torben F Hansen
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark; Institute for Regional Health Research, University of Southern Denmark, Odense M, Denmark
| | - Rune S Thing
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| |
Collapse
|
5
|
Rijken J, Hu Y, Hiscoke K. Individualized breathing trace quality assurance for lung radiotherapy patients undergoing 4DCT simulation. J Appl Clin Med Phys 2023:e13929. [PMID: 36807511 DOI: 10.1002/acm2.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 02/22/2023] Open
Abstract
4DCT simulation is a popular solution for radiotherapy simulation of lung cancer patients as it allows the clinician to gain an appreciation for target motion during the patient breathing cycle. Resultant binning of images and production of the 4DCT dataset relies heavily on the recorded breathing trace; but quality assurance is not routinely performed on these and there lacks any substantial recommendations thereof. An application was created for Windows in C# that was able to analyze the VXP breathing trace files from Varian RPM/RGSC and quantify various metrics associated with the patient breathing cycle. This data was then used to consider errors in voluming of targets for several example cases in order to justify recommendations on quality assurance. For 281 real patient breathing traces from 4DCT simulation of lung targets, notable differences were found between RGSC and application calculations of phase data. For any new patient without individualized QA, the average marked phase calculation (which is used for 4DCT reconstruction) is only accurate to within 19% of the actual phases. The error in BPM within the scan due to breathing rate variation is 37%. The uncertainty in amplitude due to breathing variation is 34% in the mean. Phase uncertainty leads to misbinning which we have shown can lead to missing 66% of the target for gated treatment. Variation in inhalation/exhalation level leads to voluming errors which, without individualized QA, can be assumed to be 11% (PTV is smaller than actual). Without individualized quality assurance of patient breathing traces, large uncertainties have to be assumed for metrics of both phase and amplitude, leading to clinically significant uncertainties in treatment. It is recommended to perform individualized quality assurance as this provides the clinician with an accurate quantification of uncertainty for their patient.
Collapse
Affiliation(s)
- James Rijken
- Icon Cancer Centre, Windsor Gardens, South Australia, Australia
| | - Yunfei Hu
- Icon Cancer Centre, Gosford, New South Wales, Australia
| | | |
Collapse
|
6
|
[Prediction of respiratory motion based on sequential embedding combined with relational embedding]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1858-1866. [PMID: 36651255 PMCID: PMC9878425 DOI: 10.12122/j.issn.1673-4254.2022.12.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To propose a deep learning model for modeling and prediction of the integration of respiratory motion in all directions. METHODS The respiratory motion signals in different directions were input into the sequential embedding layer composed of LSTM to capture the sequential dependence of the historical motion state and obtain the sequential embedding representation, which enabled relational embedding in all directions through the self-attention mechanism to obtain the relational embedding representation. The sequential embedding representation and the relational embedding representation were concatenated and input into a prediction layer consisting of a fully connected neural network to generate nonlinear prediction components, which were added to the linear prediction components generated by the autoregressive module parallel to the above structure to generate the final prediction. The model was trained using a 'pre-training + fine-tuning' approach. In the validation experiments, 304 respiratory motion trajectories were used for model pre-training, and 7 evaluation samples were used for model testing. RESULTS The proposed prediction model achieved more accurate prediction results than other methods. For the 7 evaluation samples with different delay time, the proposed prediction model achieved a reduction of absolute deviations in the 3D directions by over 70%. CONCLUSION The proposed model is capable of accurate prediction of respiratory motion and can thus help to reduce system delay in precise radiotherapy.
Collapse
|
7
|
Byrne M, Archibald-Heeren B, Hu Y, Greer P, Luo S, Aland T. Assessment of semi-automated stereotactic treatment planning for online adaptive radiotherapy in ethos. Med Dosim 2022; 47:342-347. [PMID: 36127189 DOI: 10.1016/j.meddos.2022.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
INTRODUCTION The Ethos treatment planning system allows for the rapid generation of online adaptive treatment plans while the patient is on the treatment couch. One promising application of online adaptive radiotherapy is its use in stereotactic radiotherapy. The purpose of this study was to ensure the Ethos treatment planning system (TPS) can produce clinically acceptable stereotactic plans, that are non-inferior to those from the Eclipse TPS. METHOD Forty patients that received previous stereotactic radiotherapy treatment on a Halcyon, 20 of which were lung cases, and 20 that were brain cases, were replanned using the Ethos TPS. The generated IMRT and VMAT plans were compared to the clinical Eclipse VMAT plan. RESULTS This study found that the Ethos TPS can produce VMAT plans of equivalent quality (target coverage, conformity and OAR doses) to those from the Eclipse TPS for lung SBRT and brain SRT. The IMRT plans produced by the Ethos planning system were marginally inferior to Eclipse VMAT plans, with the differences likely primarily due to beam geometry rather than the optimization system. Ethos plans were generally more modulated than Eclipse plans. With careful selection of optimization structures and reduction in the body contour, VMAT plan generation time could be reduced by 87%. CONCLUSION Ethos can generate stereotactic VMAT plans that are equivalent to those from Eclipse in the timeframe required for online adaptive radiotherapy.
Collapse
Affiliation(s)
- Mikel Byrne
- Strategic Investment & Clinical Care, Icon Group, South Brisbane, QLD, Australia; University of Newcastle, Newcastle, NSW, Australia.
| | - Ben Archibald-Heeren
- Strategic Investment & Clinical Care, Icon Group, South Brisbane, QLD, Australia
| | - Yunfei Hu
- Strategic Investment & Clinical Care, Icon Group, South Brisbane, QLD, Australia
| | - Peter Greer
- University of Newcastle, Newcastle, NSW, Australia; Calvary Mater Newcastle Hospital, Newcastle, NSW, Australia
| | - Suhuai Luo
- University of Newcastle, Newcastle, NSW, Australia
| | - Trent Aland
- Strategic Investment & Clinical Care, Icon Group, South Brisbane, QLD, Australia
| |
Collapse
|
8
|
Wada T, Kawahara D, Murakami Y, Nakashima T, Nagata Y. Robust optimization of VMAT for prostate cancer accounting for geometric uncertainty. J Appl Clin Med Phys 2022; 23:e13738. [PMID: 35920105 PMCID: PMC9512334 DOI: 10.1002/acm2.13738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022] Open
Abstract
The aim of this study was to propose optimal robust planning by comparing the robustness with setup error with the robustness of a conventional planning target volume (PTV)‐based plan and to compare the robust plan to the PTV‐based plan for the target and organ at risk (OAR). Data from 13 patients with intermediate‐to‐high‐risk localized prostate cancer who did not have T3b disease were analyzed. The dose distribution under multiple setup error scenarios was assessed using a conventional PTV‐based plan. The clinical target volume (CTV) and OAR dose in moving coordinates were used for the dose constraint with the robust plan. The hybrid robust plan added the dose constraint of the PTV‐rectum to the static coordinate system. When the isocenter was shifted by 10 mm in the superior–inferior direction and 8 mm in the right‐left and anterior directions, the doses to the CTV, bladder, and rectum of the PTV‐based plan, robust plan, and hybrid robust plan were compared. For the CTV D99% in the PTV‐based plan and hybrid robust plan, over 95% of the prescribed dose was secured in all directions, except in the inferior direction. There was no significant difference between the PTV‐based plan and the hybrid robust plan for rectum V70Gy, V60Gy, and V40Gy. This study proposed an optimization method for patients with prostate cancer. When the setup error occurred within the PTV margin, the dose robustness of the CTV for the hybrid robust plan was higher than that of the PTV‐based plan, while maintaining the equivalent OAR dose.
Collapse
Affiliation(s)
- Takuya Wada
- Section of Radiation Therapy, Department of Clinical Practice and Support, Hiroshima University Hospital, Minami-ku, Japan
| | - Daisuke Kawahara
- Department of Radiation Oncology, Institute of Biomedical and Health Sciences, Hiroshima University Hospital, Minami-ku, Japan
| | - Yuji Murakami
- Department of Radiation Oncology, Institute of Biomedical and Health Sciences, Hiroshima University Hospital, Minami-ku, Japan
| | - Takeo Nakashima
- Section of Radiation Therapy, Department of Clinical Practice and Support, Hiroshima University Hospital, Minami-ku, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Institute of Biomedical and Health Sciences, Hiroshima University Hospital, Minami-ku, Japan
| |
Collapse
|
9
|
Sarudis S, Karlsson A, Nyman J, Bäck A. Dosimetric effects of respiratory motion during stereotactic body radiation therapy of lung tumors. Acta Oncol 2022; 61:1004-1011. [PMID: 35905048 DOI: 10.1080/0284186x.2022.2092420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Respiratory-induced lung tumor motion may affect the delivered dose in stereotactic body radiation therapy (SBRT). Previous studies are often based on phantom studies for one specific treatment technique. In this study, the dosimetric effect of tumor motion was quantified in real patient geometries for different modulated treatments and tumor motion amplitudes for lung-SBRT. MATERIAL AND METHODS A simulation method using deformable image registrations and 4-dimensional computed tomographies (4DCT) was developed to assess the dosimetric effects of tumor motion. The method was evaluated with ionization chamber and Gafchromic film measurements in a thorax phantom and used to simulate the effect for 15 patients with lung tumors moving 7.3-27.4 mm. Four treatment plans with different complexities were created for each patient and the motion-induced dosimetric effect to the gross tumor volume (GTV) was simulated. The difference between the planned dose to the static tumor and the simulated delivered dose to the moving tumor was quantified for the near minimum (D98%), near maximum (D2%) and mean dose (Dmean) to the GTV as well as the largest observed local difference within the GTV (Maxdiff). RESULTS No correlation was found between the dose differences and the tumor motion amplitude or plan complexity. However, the largest deviations were observed for tumors moving >15.0 mm. The simulated delivered dose was within 2.5% from the planned dose for D98% (tumors moving <15 mm) and within 3.3% (tumors moving >15 mm). The corresponding values were 1.7% vs. 6.4% (D2%); 1.7% vs. 2.4% (Dmean) and 8.9% vs. 35.2% (Maxdiff). Using less complex treatment techniques minimized Maxdiff for tumors moving >15.0 mm. CONCLUSION The dosimetric effects of respiratory-induced motion during lung SBRT are patient and plan specific. The magnitude of the dosimetric effect cannot be assessed solely based upon tumor motion amplitude or plan complexity.
Collapse
Affiliation(s)
- Sebastian Sarudis
- Department of Medical Radiation Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Physics, County Hospital Ryhov, Jönköping, Sweden
| | - Anna Karlsson
- Department of Medical Radiation Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Therapeutic Radiation Physics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Nyman
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Bäck
- Department of Medical Radiation Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Therapeutic Radiation Physics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
10
|
Taasti VT, Hattu D, Vaassen F, Canters R, Velders M, Mannens J, van Loon J, Rinaldi I, Unipan M, van Elmpt W. Treatment planning and 4D robust evaluation strategy for proton therapy of lung tumors with large motion amplitude. Med Phys 2021; 48:4425-4437. [PMID: 34214201 PMCID: PMC8456954 DOI: 10.1002/mp.15067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/29/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Intensity‐modulated proton therapy (IMPT) for lung tumors with a large tumor movement is challenging due to loss of robustness in the target coverage. Often an upper cut‐off at 5‐mm tumor movement is used for proton patient selection. In this study, we propose (1) a robust and easily implementable treatment planning strategy for lung tumors with a movement larger than 5 mm, and (2) a four‐dimensional computed tomography (4DCT) robust evaluation strategy for evaluating the dose distribution on the breathing phases. Materials and methods We created a treatment planning strategy based on the internal target volume (ITV) concept (aim 1). The ITV was created as a union of the clinical target volumes (CTVs) on the eight 4DCT phases. The ITV expanded by 2 mm was the target during robust optimization on the average CT (avgCT). The clinical plan acceptability was judged based on a robust evaluation, computing the voxel‐wise min and max (VWmin/max) doses over 28 error scenarios (range and setup errors) on the avgCT. The plans were created in RayStation (RaySearch Laboratories, Stockholm, Sweden) using a Monte Carlo dose engine, commissioned for our Mevion S250i Hyperscan system (Mevion Medical Systems, Littleton, MA, USA). We developed a new 4D robust evaluation approach (4DRobAvg; aim 2). The 28 scenario doses were computed on each individual 4DCT phase. For each scenario, the dose distributions on the individual phases were deformed to the reference phase and combined to a weighted sum, resulting in 28 weighted sum scenario dose distributions. From these 28 scenario doses, VWmin/max doses were computed. This new 4D robust evaluation was compared to two simpler 4D evaluation strategies: re‐computing the nominal plan on each individual 4DCT phase (4DNom) and computing the robust VWmin/max doses on each individual phase (4DRobInd). The treatment planning and dose evaluation strategies were evaluated for 16 lung cancer patients with tumor movement of 4–26 mm. Results The ratio of the ITV and CTV volumes increased linearly with the tumor amplitude, with an average ratio of 1.4. Despite large ITV volumes, a clinically acceptable plan fulfilling all target and organ at risk (OAR) constraints was feasible for all patients. The 4DNom and 4DRobInd evaluation strategies were found to under‐ or overestimate the dosimetric effect of the tumor movement, respectively. 4DRobInd showed target underdosage for five patients, not observed in the robust evaluation on the avgCT or in 4DRobAvg. The accuracy of dose deformation used in 4DRobAvg was quantified and found acceptable, with differences for the dose‐volume parameters below 1 Gy in most cases. Conclusion The proposed ITV‐based planning strategy on the avgCT was found to be a clinically feasible approach with adequate tumor coverage and no OAR overdosage even for large tumor movement. The new proposed 4D robust evaluation, 4DRobAvg, was shown to give an easily interpretable understanding of the effect of respiratory motion dose distribution, and to give an accurate estimate of the dose delivered in the different breathing phases.
Collapse
Affiliation(s)
- Vicki Trier Taasti
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Djoya Hattu
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Femke Vaassen
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Richard Canters
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Marije Velders
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Jolein Mannens
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Judith van Loon
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
11
|
Gaudreault M, Offer K, Kron T, Siva S, Hardcastle N. On the reduction of aperture complexity in kidney SABR. J Appl Clin Med Phys 2021; 22:71-81. [PMID: 33756036 PMCID: PMC8035567 DOI: 10.1002/acm2.13215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 01/28/2023] Open
Abstract
Background Stereotactic ablative body radiotherapy (SABR) of primary kidney cancers is confounded by motion. There is a risk of interplay effect if the dose is delivered using volumetric modulated arc therapy (VMAT) and flattening filter‐free (FFF) dose rates due to target and linac motion. This study aims to provide an efficient way to generate plans with minimal aperture complexity. Methods In this retrospective study, 62 patients who received kidney SABR were reviewed. For each patient, two plans were created using internal target volume based motion management, on the average intensity projection of a four‐dimensional CT. In the first plan, optimization was performed using a knowledge‐based planning model based on delivered clinical plans in our institution. In the second plan, the optimization was repeated, with a maximum monitor unit (MU) objective applied in the optimization. Dose‐volume, conformity, and complexity metric (with the field edge metric and the modulation complexity score) were compared between the two plans. Results are shown in terms of median (first quartile — third quartile). Results Similar dosimetry was obtained with and without the utilization of an objective on the MU. However, complexity was reduced by using the objective on the MUs (modulation complexity score = 0.55 (0.50–0.61) / 0.33 (0.29–0.36), P‐value < 10−10, with/without the MU objective). Reduction of complexity was driven by a larger aperture area (area aperture variability = 0.68 (0.64–0.73) / 0.42 (0.37–0.45), P‐value < 10−10, with/without the MU objective). Using the objective on the MUs resulted in a more spherical dose distribution (sphericity 50% isodose = 0.73 (0.69–0.75) / 0.64 (0.60–0.68), P‐value < 10−8, with/without the MU objective) reducing dose to organs at risk given respiratory motion. Conclusions Aperture complexity is reduced in kidney SABR by using an objective on the MU delivery with VMAT and FFF dose rate.
Collapse
Affiliation(s)
- Mathieu Gaudreault
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic., Australia
| | - Keith Offer
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic., Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic., Australia.,Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic., Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
12
|
Noufal MP, Widesott L, Sharma SD, Righetto R, Cianchetti M, Schwarz M. The Role of Plan Robustness Evaluation in Comparing Protons and Photons Plans - An Application on IMPT and IMRT Plans in Skull Base Chordomas. J Med Phys 2020; 45:206-214. [PMID: 33953495 PMCID: PMC8074721 DOI: 10.4103/jmp.jmp_45_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/17/2020] [Accepted: 10/30/2020] [Indexed: 12/03/2022] Open
Abstract
PURPOSE To analyze robustness of treatment plans optimized using different approaches in intensity modulated proton therapy (IMPT) and investigate the necessity of robust optimization and evaluation in intensity modulated radiotherapy (IMRT) plans for skull base chordomas. MATERIALS AND METHODS Two photon plans, standard IMRT and robustly optimized IMRT (RB-IMRT), and two IMPT plans, robustly optimized multi field optimization (MFO) and hybrid-MFO (HB-MFO), were created in RayStation TPS for five patients previously treated using single field uniform optimization (SFO). Both set-up and range uncertainties were incorporated during robust optimization of IMPT plans whereas only set-up uncertainty was used in RB-IMRT. The dosimetric outcomes from the five planning techniques were compared for every patient using standard dose volume indices and integral dose (ID) estimated for target and organs at risk (OARs). Robustness of each treatment plan was assessed by introducing set-up uncertainties of ±3 mm along the three translational axes and, only in protons, an additional range uncertainty of ±3.5%. RESULTS All the five nominal plans provided comparable and clinically acceptable target coverage. In comparison to nominal plans, worst case decrease in D95% of clinical target volume-high risk (CTV-HR) were 11.1%, 13.5%, and 13.6% for SFO, MFO, and HB-MFO plans respectively. The corresponding values were 13.7% for standard IMRT which improved to 11.5% for RB-IMRT. The worst case increased in high dose (D1%) to CTV-HR was highest in IMRT (2.1%) and lowest in SFO (0.7%) plans. Moreover, IMRT showed worst case increases in D1% for all neurological OARs and were lowest for SFO plans. The worst case D1% for brainstem, chiasm, spinal cord, optic nerves, and temporal lobes were increased by 29%, 41%, 30%, 41% and 14% for IMRT and 18%, 21%, 21%, 24%, and 7% for SFO plans, respectively. In comparison to IMRT, RB-IMRT improved D1% of all neurological OARs ranging from 5% to 14% in worst case scenarios. CONCLUSION Based on the five cases presented in the current study, all proton planning techniques (SFO, MFO and HB-MFO) were robust both for target coverage and OARs sparing. Standard IMRT plans were less robust than proton plans in regards to high doses to neurological OARs. However, robust optimization applied to IMRT resulted in improved robustness in both target coverage and high doses to OARs. Robustness evaluation may be considered as a part of plan evaluation procedure even in IMRT.
Collapse
Affiliation(s)
| | - Lamberto Widesott
- Department of Proton Therapy, Azienda Provinciale Per I Servizi Sanitari, Trento, Italy
| | | | - Roberto Righetto
- Department of Proton Therapy, Azienda Provinciale Per I Servizi Sanitari, Trento, Italy
| | - Marco Cianchetti
- Department of Proton Therapy, Azienda Provinciale Per I Servizi Sanitari, Trento, Italy
| | - Marco Schwarz
- Department of Proton Therapy, Azienda Provinciale Per I Servizi Sanitari, Trento, Italy
- TIFPA - INFN, Trento, Italy
| |
Collapse
|
13
|
Miura H, Ozawa S, Doi Y, Nakao M, Kubo K, Kenjo M, Nagata Y. Effectiveness of robust optimization in volumetric modulated arc therapy using 6 and 10 MV flattening filter-free beam therapy planning for lung stereotactic body radiation therapy with a breath-hold technique. JOURNAL OF RADIATION RESEARCH 2020; 61:575-585. [PMID: 32367109 PMCID: PMC7336549 DOI: 10.1093/jrr/rraa026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Indexed: 06/11/2023]
Abstract
We investigated the feasibility of a robust optimization with 6 MV X-ray (6X) and 10 MV X-ray (10X) flattening filter-free (FFF) beams in a volumetric modulated arc therapy (VMAT) plan for lung stereotactic body radiation therapy (SBRT) using a breath-holding technique. Ten lung cancer patients were selected. Four VMAT plans were generated for each patient; namely, an optimized plan based on the planning target volume (PTV) margin and a second plan based on a robust optimization of the internal target volume (ITV) with setup uncertainties, each for the 6X- and 10X-FFF beams. Both optimized plans were normalized by the percentage of the prescription dose covering 95% of the target volume (D95%) to the PTV (1050 cGy × 4 fractions). All optimized plans were evaluated using perturbed doses by specifying user-defined shifted values from the isocentre. The average perturbed D99% doses to the ITV, compared to the nominal plan, decreased by 369.1 (6X-FFF) and 301.0 cGy (10X-FFF) for the PTV-based optimized plan, and 346.0 (6X-FFF) and 271.6 cGy (10X-FFF) for the robust optimized plan, respectively. The standard deviation of the D99% dose to the ITV were 163.6 (6X-FFF) and 158.9 cGy (10X-FFF) for the PTV-based plan, and 138.9 (6X-FFF) and 128.5 cGy (10X-FFF) for the robust optimized plan, respectively. Robust optimized plans with 10X-FFF beams is a feasible method to achieve dose certainty for the ITV for lung SBRT using a breath-holding technique.
Collapse
Affiliation(s)
- Hideharu Miura
- Hiroshima High-Precision Radiotherapy Cancer Center
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University
| | - Shuichi Ozawa
- Hiroshima High-Precision Radiotherapy Cancer Center
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University
| | - Yoshiko Doi
- Hiroshima High-Precision Radiotherapy Cancer Center
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University
| | - Minoru Nakao
- Hiroshima High-Precision Radiotherapy Cancer Center
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University
| | | | - Masahiko Kenjo
- Hiroshima High-Precision Radiotherapy Cancer Center
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University
| | - Yasushi Nagata
- Hiroshima High-Precision Radiotherapy Cancer Center
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University
| |
Collapse
|
14
|
Leung RWK, Chan MKH, Chiang CL, Wong M, Blanck O. On the pitfalls of PTV in lung SBRT using type-B dose engine: an analysis of PTV and worst case scenario concepts for treatment plan optimization. Radiat Oncol 2020; 15:130. [PMID: 32471457 PMCID: PMC7260838 DOI: 10.1186/s13014-020-01573-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/17/2020] [Indexed: 11/30/2022] Open
Abstract
Background PTV concept is presumed to introduce excessive and inconsistent GTV dose in lung stereotactic body radiotherapy (SBRT). That GTV median dose prescription (D50) and robust optimization are viable PTV–free solution (ICRU 91 report) to harmonize the GTV dose was investigated by comparisons with PTV–based SBRT plans. Methods Thirteen SBRT plans were optimized for 54 Gy / 3 fractions and prescribed (i) to 95% of the PTV (D95) expanded 5 mm from the ITV on the averaged intensity project (AIP) CT, i.e., PTVITV, (ii) to D95 of PTV derived from the van Herk (VH)‘s margin recipe on the mid–ventilation (MidV)–CT, i.e., PTVVH, (iii) to ITV D98 by worst case scenario (WCS) optimization on AIP,i.e., WCSITV and (iv) to GTV D98 by WCS using all 4DCT images, i.e., WCSGTV. These plans were subsequently recalculated on all 4DCT images and deformably summed on the MidV–CT. The dose differences between these plans were compared for the GTV and selected normal organs by the Friedman tests while the variability was compared by the Levene’s tests. The phase–to–phase changes of GTV dose through the respiration were assessed as an indirect measure of the possible increase of photon fluence owing to the type–B dose engine. Finally, all plans were renormalized to GTV D50 and all the dosimetric analyses were repeated to assess the relative influences of the SBRT planning concept and prescription method on the variability of target dose. Results By coverage prescriptions (i) to (iv), significantly smaller chest wall volume receiving ≥30 Gy (CWV30) and normal lung ≥20 Gy (NLV20Gy) were achieved by WCSITV and WCSGTV compared to PTVITV and PTVVH (p > 0.05). These plans differed significantly in the recalculated and summed GTV D2, D50 and D98 (p < 0.05). The inter–patient variability of all GTV dose parameters is however equal between these plans (Levene’s tests; p > 0.05). Renormalizing these plans to GTV D50 reduces their differences in GTV D2, and D98 to insignificant level (p > 0.05) and their inter–patient variability of all GTV dose parameters. None of these plans showed significant differences in GTV D2, D50 and D98 between respiratory phases, nor their inter–phase variability is significant. Conclusion Inconsistent GTV dose is not unique to PTV concept but occurs to other PTV–free concept in lung SBRT. GTV D50 renormalization effectively harmonizes the target dose among patients and SBRT concepts of geometric uncertainty management.
Collapse
Affiliation(s)
| | - Mark Ka Heng Chan
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany. .,Department of Radiotherapy, University Hospital Essen, Kiel Campus, 24105, Kiel, Germany.
| | - Chi-Leung Chiang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Matthew Wong
- Department of Clinical Oncology, TuenMun Hospital, Hong Kong, SAR, China
| | - Oliver Blanck
- Department of Radiotherapy, University Hospital Essen, Kiel Campus, 24105, Kiel, Germany
| |
Collapse
|
15
|
Burton A, Offer K, Hardcastle N. A robust VMAT delivery solution for single-fraction lung SABR utilizing FFF beams minimizing dosimetric compromise. J Appl Clin Med Phys 2020; 21:299-304. [PMID: 32469150 PMCID: PMC7484828 DOI: 10.1002/acm2.12919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022] Open
Abstract
Peripheral lung lesions treated with a single fraction of stereotactic ablative body radiotherapy (SABR) utilizing volumetric modulated arc therapy (VMAT) delivery and flattening filter‐free (FFF) beams represent a potentially high‐risk scenario for clinically significant dose blurring effects due to interplay between the respiratory motion of the lesion and dynamic multi‐leaf collimators (MLCs). The aim of this study was to determine an efficient means of developing low‐modulation VMAT plans in the Eclipse treatment planning system (v15.5, Varian Medical Systems, Palo Alto, USA) in order to minimize this risk, while maintaining dosimetric quality. The study involved 19 patients where an internal target volume (ITV) was contoured to encompass the entire range of tumor motion, and a planning target volume (PTV) created using a 5‐mm isotropic expansion of this contour. Each patient had seven plan variations created, with each rescaled to achieve the clinical planning goal for PTV coverage. All plan variations used the same field arrangement, and consisted of one dynamic conformal arc therapy (DCAT) plan, and six VMAT plans with varying degrees of modulation restriction, achieved through utilizing different combinations of the aperture shape controller (ASC) in the calculation parameters, and monitor unit (MU) objective during optimization. The dosimetric quality was assessed based on RTOG conformity indices (CI100/CI50), as well as adherence to dose–volume metrics used clinically at our institution. Plan complexity was assessed based on the modulation factor (MU/cGy) and the field edge metric. While VMAT plans with the least modulation restriction achieved the best dosimetry, it was found that there was no clinically significant trade‐off in terms of dose to organs at risk and conformity by reducing complexity. Furthermore, it was found that utilizing the ASC and MU objective could reduce plan complexity to near‐DCAT levels with improved dosimetry, which may be sufficiently robust to overcome the interplay effect.
Collapse
Affiliation(s)
- Alex Burton
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Keith Offer
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicholas Hardcastle
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
16
|
Miura H, Ozawa S, Kusaba H, Doi Y, Kenjo M, Yamada K, Nagata Y. Characterization of robust optimization for VMAT plan for liver cancer. Rep Pract Oncol Radiother 2020; 25:376-381. [PMID: 32322176 DOI: 10.1016/j.rpor.2020.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 01/21/2020] [Accepted: 03/16/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose We investigated the feasibility of robust optimization for volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) for liver cancer in comparison with planning target volume (PTV)-based optimized plans. Treatment plan quality, robustness, complexity, and accuracy of dose delivery were assessed. Methods Ten liver cancer patients were selected for this study. PTV-based optimized plans with an 8-mm PTV margin and robust optimized plans with an 8-mm setup uncertainty were generated. Plan perturbed doses were evaluated using a setup error of 8 mm in all directions from the isocenter. The dosimetric comparison parameters were clinical target volume (CTV) doses (D98%, D50%, and D2%), liver doses, and monitor unit (MU). Plan complexity was evaluated using the modulation complexity score for VMAT (MCSv). Results There was no significant difference between the two optimizations with respect to CTV doses and MUs. Robust optimized plans had a higher liver dose than did PTV-based optimized plans. Plan perturbed dose evaluations showed that doses to the CTV for the robust optimized plans had small variations. Robust optimized plans were less complex than PTV-based optimized plans. Robust optimized plans had statistically significant fewer leaf position errors than did PTV-based optimized plans. Conclusions Comparison of treatment plan quality, robustness, and plan complexity of both optimizations showed that robust optimization could be feasibile for VMAT of liver cancer.
Collapse
Affiliation(s)
- Hideharu Miura
- Hiroshima High-Precision Radiotherapy Cancer Center, Japan.,Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Shuichi Ozawa
- Hiroshima High-Precision Radiotherapy Cancer Center, Japan.,Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Hayate Kusaba
- Hiroshima High-Precision Radiotherapy Cancer Center, Japan
| | - Yoshiko Doi
- Hiroshima High-Precision Radiotherapy Cancer Center, Japan.,Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Masahiko Kenjo
- Hiroshima High-Precision Radiotherapy Cancer Center, Japan.,Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kiyoshi Yamada
- Hiroshima High-Precision Radiotherapy Cancer Center, Japan
| | - Yasushi Nagata
- Hiroshima High-Precision Radiotherapy Cancer Center, Japan.,Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| |
Collapse
|
17
|
Korevaar EW, Habraken SJM, Scandurra D, Kierkels RGJ, Unipan M, Eenink MGC, Steenbakkers RJHM, Peeters SG, Zindler JD, Hoogeman M, Langendijk JA. Practical robustness evaluation in radiotherapy - A photon and proton-proof alternative to PTV-based plan evaluation. Radiother Oncol 2019; 141:267-274. [PMID: 31492443 DOI: 10.1016/j.radonc.2019.08.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/23/2019] [Accepted: 08/10/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE A planning target volume (PTV) in photon treatments aims to ensure that the clinical target volume (CTV) receives adequate dose despite treatment uncertainties. The underlying static dose cloud approximation (the assumption that the dose distribution is invariant to errors) is problematic in intensity modulated proton treatments where range errors should be taken into account as well. The purpose of this work is to introduce a robustness evaluation method that is applicable to photon and proton treatments and is consistent with (historic) PTV-based treatment plan evaluations. MATERIALS AND METHODS The limitation of the static dose cloud approximation was solved in a multi-scenario simulation by explicitly calculating doses for various treatment scenarios that describe possible errors in the treatment course. Setup errors were the same as the CTV-PTV margin and the underlying theory of 3D probability density distributions was extended to 4D to include range errors, maintaining a 90% confidence level. Scenario dose distributions were reduced to voxel-wise minimum and maximum dose distributions; the first to evaluate CTV coverage and the second for hot spots. Acceptance criteria for CTV D98 and D2 were calibrated against PTV-based criteria from historic photon treatment plans. RESULTS CTV D98 in worst case scenario dose and voxel-wise minimum dose showed a very strong correlation with scenario average D98 (R2 > 0.99). The voxel-wise minimum dose visualised CTV dose conformity and coverage in 3D in agreement with PTV-based evaluation in photon therapy. Criteria for CTV D98 and D2 of the voxel-wise minimum and maximum dose showed very strong correlations to PTV D98 and D2 (R2 > 0.99) and on average needed corrections of -0.9% and +2.3%, respectively. CONCLUSIONS A practical approach to robustness evaluation was provided and clinically implemented for PTV-less photon and proton treatment planning, consistent with PTV evaluations but without its static dose cloud approximation.
Collapse
Affiliation(s)
- Erik W Korevaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands.
| | - Steven J M Habraken
- Holland Proton Therapy Center, Delft, The Netherlands; Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Daniel Scandurra
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Roel G J Kierkels
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Mirko Unipan
- Proton Therapy Centre South-East Netherlands (ZON-PTC), Maastricht, The Netherlands
| | | | - Roel J H M Steenbakkers
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Stephanie G Peeters
- Proton Therapy Centre South-East Netherlands (ZON-PTC), Maastricht, The Netherlands
| | - Jaap D Zindler
- Holland Proton Therapy Center, Delft, The Netherlands; Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Mischa Hoogeman
- Holland Proton Therapy Center, Delft, The Netherlands; Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
18
|
Composite minimax robust optimization of VMAT improves target coverage and reduces non-target dose in head and neck cancer patients. Radiother Oncol 2019; 136:71-77. [DOI: 10.1016/j.radonc.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/15/2019] [Accepted: 03/20/2019] [Indexed: 11/21/2022]
|
19
|
Miura H, Doi Y, Ozawa S, Nakao M, Ohnishi K, Kenjo M, Nagata Y. Volumetric modulated arc therapy with robust optimization for larynx cancer. Phys Med 2019; 58:54-58. [PMID: 30824150 DOI: 10.1016/j.ejmp.2019.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The aim of this study was to perform a comparison between robust optimization and planning target volume (PTV)-based optimization plans using volumetric modulated arc-therapy (VMAT) by evaluating perturbed doses induced by localization offsets for setup uncertainties in larynx cancer radiation therapy. METHODS Ten patients with early-stage (T1-2N0) glottis carcinoma were selected. The clinical target volume (CTV), carotid arteries, and spinal cord were contoured by a radiation oncologist. PTV-based and robust optimization plans were normalized at D50% to the PTV and D98% to the CTV, respectively. Both optimization plans were evaluated using perturbed doses by specifying user defined shifted values from the isocenter. CTV dose (D98%, D50%, and D2%), homogeneity index (HI) and conformity index (CI95%, CI80%, and CI50%), as well as doses to the carotid arteries and spinal cord were compared between PTV-based and robust optimization plans. RESULTS The robust optimization plans exhibited superior CTV coverage and a reduced dose to the carotid arteries compared to the PTV-based optimization plans (p < 0.05). HI, CI95% and the dose to the spinal cord did not significantly differ between the PTV-based and robust optimization plans (p > 0.05). The robust optimization plans showed better CI80% and CI50% compared to the PTV-based optimization plans (p < 0.05). Plan perturbed evaluations showed that the robust optimization plan has small variations in the doses to the CTV, carotid arteries, and spinal cord compared to the PTV-based optimization plan. CONCLUSIONS The robust optimization plan may be a suitable treatment method in radiotherapy for larynx cancer patient.
Collapse
Affiliation(s)
- Hideharu Miura
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan; Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan.
| | - Yoshiko Doi
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan; Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Shuichi Ozawa
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan; Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Minoru Nakao
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan; Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Keiichi Ohnishi
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Masahiko Kenjo
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan; Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Yasushi Nagata
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan; Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
20
|
Investigating the impact of tumour motion on TomoTherapy stereotactic ablative body radiotherapy (SABR) deliveries on 3-dimensional and 4-dimensional computed tomography. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:169-179. [PMID: 30790140 DOI: 10.1007/s13246-019-00727-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/18/2019] [Indexed: 12/25/2022]
Abstract
TomoTherapy can provide highly accurate SABR deliveries, but currently it does not have any effective motion management techniques. Shallow breathing has been identified as one possible motion management solution on TomoTherapy, which has been made possible with the BreatheWell audiovisual biofeedback (AVB) device. Since both the shallow breathing technique and the clinical use of the BreatheWell device are novel, their implementation requires comprehensive verification and validation work. As the first stage of the validation, this paper investigates the impact of target motion on a TomoTherapy SABR delivery is assessed on both 3D CT and 4D CT using a 4D respiratory phantom. A dosimetric study on a 4D respiratory phantom was conducted, with the phantom's insert designed to move at four different amplitudes in the superior-inferior direction. SABR plans on 3D and 4D CT scans were created and measured. Critical plan statistics and measurement results were compared. It is found that for TomoTherapy SABR deliveries, by reducing the targets respiratory motion, target coverage, organ-at-risk (OAR) sparing, and delivery accuracy were improved.
Collapse
|
21
|
Liu G, Hu F, Ding X, Li X, Shao Q, Wang Y, Yang J, Quan H. Simulation of dosimetry impact of 4DCT uncertainty in 4D dose calculation for lung SBRT. Radiat Oncol 2019; 14:1. [PMID: 30621744 PMCID: PMC6323842 DOI: 10.1186/s13014-018-1191-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/21/2018] [Indexed: 11/10/2022] Open
Abstract
Background Due to the heterogeneity of patient’s individual respiratory motion pattern in lung stereotactic body radiotherapy (SBRT), treatment planning dose assessment using a traditional four-dimensional computed tomography (4DCT_traditional) images based on a uniform breathing curve may not represent the true treatment dose delivered to the patient. The purpose of this study was to evaluate the accumulated dose discrepancy between based on the 4DCT_traditional and true 4DCT (4DCT_true) that incorporated with the patient’s real entire breathing motion. The study also explored a novel 4D robust planning strategy to compensate for such heterogeneity respiratory motion uncertainties. Methods Simulated and measured patient specific breathing curves were used to generate 4D targets motion CT images. Volumetric-modulated arc therapy (VMAT) was planned using two arcs. Accumulated dose was obtained by recalculating the plan dose on each individual phase image and then deformed the dose from each phase image to the reference image. The “4 D dose” (D4D) and “true dose” (Dtrue) were the accumulated dose based on the 4DCT_traditional and 4DCT_true respectively. The average worse case dose discrepancy (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{\Delta D} $$\end{document}ΔD¯) between D4D and Dtrue in all treatment fraction was calculated to evaluate dosimetric /planning parameters and correlate them with the heterogeneity of respiratory-induced motion patterns. A novel 4D robust optimization strategy for VMAT (4D Ro-VMAT) based on the probability density function(pdf) of breathing curve was proposed to improve the target coverage in the presence of heterogeneity respiratory motion. The data were assessed with a paired t-tests. Results With increasing breathing amplitude from 5 to 20 mm, target \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{\Delta {D}_{99}} $$\end{document}ΔD99¯, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{\Delta {D}_{95}} $$\end{document}ΔD95¯ increased from 1.59,1.39 to 10.15%,8.66% respectively. When the standard deviation of breathing amplitude increased from 15 to 35% of the mean amplitude, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{\Delta {D}_{99}} $$\end{document}ΔD99¯, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{\Delta {D}_{95}} $$\end{document}ΔD95¯ increased from 4.06,3.48 to 10.25%,6.63% respectively. The 4D Ro-VMAT plan significantly improve the target dose compared to VMAT plan. Conclusion When the breathing curve amplitude is more than 10 mm and standard deviation of amplitude is higher than 25% of mean amplitude, special care is needed to choose an appropriated dose accumulation approach to evaluate lung SBRT plan target coverage robustness. The proposed 4D Ro_VMAT strategy based on the pdf of patient specific breathing curve could effectively compensate such uncertainties.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Artificial Micro- and Nano- structures of Ministry of Education and Center for Electronic Microscopy, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fala Hu
- School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China
| | - Xuanfeng Ding
- Proton Therapy Center Beaumont Health, Royal Oak, MI, 48074, USA
| | - Xiaoqiang Li
- Proton Therapy Center Beaumont Health, Royal Oak, MI, 48074, USA
| | - Qihong Shao
- Wuhan Zhongyuan Electronics Group Co. LTD, Wuhan, 430205, China
| | - Yuenan Wang
- Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, 518000, China
| | - Jing Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Quan
- Key Laboratory of Artificial Micro- and Nano- structures of Ministry of Education and Center for Electronic Microscopy, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
22
|
Unkelbach J, Alber M, Bangert M, Bokrantz R, Chan TCY, Deasy JO, Fredriksson A, Gorissen BL, van Herk M, Liu W, Mahmoudzadeh H, Nohadani O, Siebers JV, Witte M, Xu H. Robust radiotherapy planning. ACTA ACUST UNITED AC 2018; 63:22TR02. [DOI: 10.1088/1361-6560/aae659] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Zhang X, Rong Y, Morrill S, Fang J, Narayanasamy G, Galhardo E, Maraboyina S, Croft C, Xia F, Penagaricano J. Robust optimization in lung treatment plans accounting for geometric uncertainty. J Appl Clin Med Phys 2018. [PMID: 29524301 PMCID: PMC5978970 DOI: 10.1002/acm2.12291] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Robust optimization generates scenario‐based plans by a minimax optimization method to find optimal scenario for the trade‐off between target coverage robustness and organ‐at‐risk (OAR) sparing. In this study, 20 lung cancer patients with tumors located at various anatomical regions within the lungs were selected and robust optimization photon treatment plans including intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were generated. The plan robustness was analyzed using perturbed doses with setup error boundary of ±3 mm in anterior/posterior (AP), ±3 mm in left/right (LR), and ±5 mm in inferior/superior (IS) directions from isocenter. Perturbed doses for D99, D98, and D95 were computed from six shifted isocenter plans to evaluate plan robustness. Dosimetric study was performed to compare the internal target volume‐based robust optimization plans (ITV‐IMRT and ITV‐VMAT) and conventional PTV margin‐based plans (PTV‐IMRT and PTV‐VMAT). The dosimetric comparison parameters were: ITV target mean dose (Dmean), R95(D95/Dprescription), Paddick's conformity index (CI), homogeneity index (HI), monitor unit (MU), and OAR doses including lung (Dmean, V20 Gy and V15 Gy), chest wall, heart, esophagus, and maximum cord doses. A comparison of optimization results showed the robust optimization plan had better ITV dose coverage, better CI, worse HI, and lower OAR doses than conventional PTV margin‐based plans. Plan robustness evaluation showed that the perturbed doses of D99, D98, and D95 were all satisfied at least 99% of the ITV to received 95% of prescription doses. It was also observed that PTV margin‐based plans had higher MU than robust optimization plans. The results also showed robust optimization can generate plans that offer increased OAR sparing, especially for normal lungs and OARs near or abutting the target. Weak correlation was found between normal lung dose and target size, and no other correlation was observed in this study.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Yi Rong
- Department of Radiation Oncology, University of California at Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Steven Morrill
- Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Jian Fang
- Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Ganesh Narayanasamy
- Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Edvaldo Galhardo
- Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Sanjay Maraboyina
- Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Christopher Croft
- Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Fen Xia
- Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Jose Penagaricano
- Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, AR, USA
| |
Collapse
|