1
|
Byrne HL, Steiner E, Booth J, Lamoury G, Morgia M, Carroll S, Richardson K, Ambrose L, Makhija K, Stanton C, Zwan B, Carr M, Stewart M, Bromley R, Atyeo J, Silvester S, Plant N, Keall P. Prospective Randomized Trial Comparing 2 Devices for Deep Inspiration Breath Hold Management in Breast Radiation Therapy: Results of the BRAVEHeart Trial. Adv Radiat Oncol 2024; 9:101572. [PMID: 39221134 PMCID: PMC11364044 DOI: 10.1016/j.adro.2024.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose The Breast Radiotherapy Audio Visual Enhancement for sparing the Heart (BRAVEHeart) trial prospectively randomized patients with left-sided breast cancer to 1 of 2 deep inspiration breath hold biofeedback devices: a novel chest surface tracking system and an abdominal block tracking system. The primary hypothesis was that the accuracy of chest tracking would be higher than that of abdominal tracking as the chest is a more direct surrogate of the breast target. Methods and Materials Patients with left-sided breast cancer were treated in deep inspiration breath hold with intensity modulated radiation therapy delivery. Patients were randomized to either the novel chest surface system or abdominal block system for active management of breath hold with visual feedback. On both trial arms, the unallocated system was monitored passively. A total of 239,296 cine electronic portal imaging device images were analyzed retrospectively to extract the chest wall position. Treatment accuracy was quantified as the deviation of the internal chest wall during treatment relative to the planned position from the digitally reconstructed radiograph. The correlation between motion of the external surrogate and internal chest wall was calculated per-breath hold. Ease of use was assessed with questionnaires for both radiation therapists and patients and appointment length recorded. Results Data from 26 participants were available for analysis. No difference was found in delivered treatment accuracy between arms. Across all patients and fractions, the median correlation between internal chest wall movement and external surrogate was 0.69 for the chest surface and 0.17 for the abdominal block. Patients found it easy to follow visual feedback from both systems. No difference was found in appointment length between arms. Conclusions No statistical evidence was found for superior treatment accuracy, satisfaction, or appointment length for the novel chest surface tracking device compared with the abdominal block system. During deep inspiration breath hold, the median per-breath hold correlation of internal chest wall movement to the motion of the chest surface was higher than the median correlation of the abdominal block to the chest surface.
Collapse
Affiliation(s)
- Hilary L. Byrne
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Elisabeth Steiner
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Landesklinikum Wiener Neustadt, Vienna, Austria
| | - Jeremy Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Gillian Lamoury
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Marita Morgia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Susan Carroll
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Kylie Richardson
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Leigh Ambrose
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Kuldeep Makhija
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Cameron Stanton
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Benjamin Zwan
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Michael Carr
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Maegan Stewart
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Regina Bromley
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - John Atyeo
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Shona Silvester
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Natalie Plant
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul Keall
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Huijskens S, Granton P, Fremeijer K, van Wanrooij C, Offereins-van Harten K, Schouwenaars-van den Beemd S, Hoogeman MS, Sattler MGA, Penninkhof J. Clinical practicality and patient performance for surface-guided automated VMAT gating for DIBH breast cancer radiotherapy. Radiother Oncol 2024; 195:110229. [PMID: 38492672 DOI: 10.1016/j.radonc.2024.110229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AND PURPOSE To evaluate the performance of automated surface-guided gating for left-sided breast cancer with DIBH and VMAT. MATERIALS AND METHODS Patients treated in the first year after introduction of DIBH with VMAT were retrospectively considered for analysis. With automated surface-guided gating the beam automatically switches on/off, if the surface region of interest moved in/out the gating tolerance (±3 mm, ±3°). Patients were coached to hold their breath as long as comfortably possible. Depending on the patient's preference, patients received audio instructions during treatment delivery. Real-time positional variations of the breast/chest wall surface with respect to the reference surface were collected, for all three orthogonal directions. The durations and number of DIBHs needed to complete dose delivery, and DIBH position variations were determined. To evaluate an optimal gating window threshold, smaller tolerances of ±2.5 mm, ±2.0 mm, and ±1.5 mm were simulated. RESULTS 525 fractions from 33 patients showed that median DIBH duration was 51 s (range: 30-121 s), and median 4 DIBHs per fraction were needed to complete VMAT dose delivery. Median intra-DIBH stability and intrafractional DIBH reproducibility approximated 1.0 mm in each direction. No large differences were found between patients who preferred to perform the DIBH procedure with (n = 21) and without audio-coaching (n = 12). Simulations demonstrated that gating window tolerances could be reduced from ±3.0 mm to ±2.0 mm, without affecting beam-on status. CONCLUSION Independent of the use of audio-coaching, this study demonstrates that automated surface-guided gating with DIBH and VMAT proved highly efficient. Patients' DIBH performance far exceeded our expectations compared to earlier experiences and literature. Furthermore, gating window tolerances could be reduced.
Collapse
Affiliation(s)
- Sophie Huijskens
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands.
| | - Patrick Granton
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Kimm Fremeijer
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Cynthia van Wanrooij
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Kirsten Offereins-van Harten
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | | | - Mischa S Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Margriet G A Sattler
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Joan Penninkhof
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Oshima M, Shikama N, Usui K, Nojiri S, Isobe A, Muramoto Y, Kawamoto T, Yamaguchi N, Kosugi Y, Sasai K. Development of deep-inspiration breath-hold system that monitors the position of the chest wall using infrared rangefinder. JOURNAL OF RADIATION RESEARCH 2023; 64:171-179. [PMID: 36527722 PMCID: PMC9855317 DOI: 10.1093/jrr/rrac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/17/2022] [Indexed: 06/17/2023]
Abstract
We conducted a prospective study to quantitatively evaluate the movement of the chest wall to establish the simple and reproducible deep-inspiration breath-hold (DIBH) method. The left nipple position was monitored to confirm the inspiratory state. Planning computed tomography (CT) was performed under DIBH and free-breath. We conducted radiation plans with DIBH and free-breath CT and evaluated organ at risk (OAR) and target doses according to two different plans. The relationship between positioning errors of the chest wall and patient factors was evaluated using univariate analysis and fixed-effects models. Twenty-three patients aged ≤ 60 years were enrolled during January-August 2021; 358 daily radiation treatments were evaluated. The median time of treatment room occupancy was 16 minutes (interquartile range, 14-20). The area of the planning target volume (PTV) surrounded by the 95% isodose line was more extensive in DIBH than in free breathing (71.6% vs 69.5%, P < 0.01), whereas the cardiac and left anterior descending (LAD) artery doses were lower (both P < 0.01). In the fixed-effects model analysis, the occupation time of the treatment room was correlated with positioning error. The difference between the planned and irradiated dose was the largest in the LAD branch of the coronary artery (-2.5 Gy), although the OAR dose decreased owing to positional error. The current DIBH method, wherein a single point on the chest wall is monitored to confirm that the patient is in an inspiratory state, allows radiation to be performed in a short time with a small dose error.
Collapse
Affiliation(s)
- Masaki Oshima
- Corresponding author. 21-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Tel: +81-3-3813-3111; Fax: +81-3-3813-3622; E-mail:
| | - Naoto Shikama
- Department of Radiation Oncology, Juntendo University, Graduate School of Medicine, 21-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Keisuke Usui
- Department of Radiation Oncology, Juntendo University, Graduate School of Medicine, 21-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Radiological Technology, Juntendo University, 21-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shuko Nojiri
- Medical Technology Innovation Center, Juntendo University, 21-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akira Isobe
- Department of Radiology, Juntendo University Hospital, 21-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoichi Muramoto
- Department of Radiation Oncology, Juntendo University, Graduate School of Medicine, 21-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Terufumi Kawamoto
- Department of Radiation Oncology, Juntendo University, Graduate School of Medicine, 21-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Nanae Yamaguchi
- Department of Radiation Oncology, Juntendo University, Graduate School of Medicine, 21-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasuo Kosugi
- Department of Radiation Oncology, Juntendo University, Graduate School of Medicine, 21-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Keisuke Sasai
- Department of Radiation Oncology, Juntendo University, Graduate School of Medicine, 21-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Misugikai Satou Hospital, Department of Radiation Oncology, 65-1 Yabuhigashimachi, Hirakata-shi, Osaka 573-1124, Japan
| |
Collapse
|
4
|
Sengupta C, Skouboe S, Ravkilde T, Poulsen PR, Nguyen DT, Greer PB, Moodie T, Hardcastle N, Hayden AJ, Turner S, Siva S, Tai KH, Martin J, Booth JT, O'Brien R, Keall PJ. The dosimetric error due to uncorrected tumor rotation during real-time adaptive prostate stereotactic body radiation therapy. Med Phys 2023; 50:20-29. [PMID: 36354288 PMCID: PMC10099881 DOI: 10.1002/mp.16094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND During prostate stereotactic body radiation therapy (SBRT), prostate tumor translational motion may deteriorate the planned dose distribution. Most of the major advances in motion management to date have focused on correcting this one aspect of the tumor motion, translation. However, large prostate rotation up to 30° has been measured. As the technological innovation evolves toward delivering increasingly precise radiotherapy, it is important to quantify the clinical benefit of translational and rotational motion correction over translational motion correction alone. PURPOSE The purpose of this work was to quantify the dosimetric impact of intrafractional dynamic rotation of the prostate measured with a six degrees-of-freedom tumor motion monitoring technology. METHODS The delivered dose was reconstructed including (a) translational and rotational motion and (b) only translational motion of the tumor for 32 prostate cancer patients recruited on a 5-fraction prostate SBRT clinical trial. Patients on the trial received 7.25 Gy in a treatment fraction. A 5 mm clinical target volume (CTV) to planning target volume (PTV) margin was applied in all directions except the posterior direction where a 3 mm expansion was used. Prostate intrafractional translational motion was managed using a gating strategy, and any translation above the gating threshold was corrected by applying an equivalent couch shift. The residual translational motion is denoted as T r e s $T_{res}$ . Prostate intrafractional rotational motion R u n c o r r $R_{uncorr}$ was recorded but not corrected. The dose differences from the planned dose due to T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ , ΔD( T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ ) and due to T r e s $T_{res}$ alone, ΔD( T r e s $T_{res}$ ), were then determined for CTV D98, PTV D95, bladder V6Gy, and rectum V6Gy. The residual dose error due to uncorrected rotation, R u n c o r r $R_{uncorr}$ was then quantified: Δ D R e s i d u a l $\Delta D_{Residual}$ = ΔD( T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ ) - ΔD( T res ${T}_{\textit{res}}$ ). RESULTS Fractional data analysis shows that the dose differences from the plan (both ΔD( T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ ) and ΔD( T r e s $T_{res}$ )) for CTV D98 was less than 5% in all treatment fractions. ΔD( T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ ) was larger than 5% in one fraction for PTV D95, in one fraction for bladder V6Gy, and in five fractions for rectum V6Gy. Uncorrected rotation, R u n c o r r $R_{uncorr}$ induced residual dose error, Δ D R e s i d u a l $\Delta D_{Residual}$ , resulted in less dose to CTV and PTV in 43% and 59% treatment fractions, respectively, and more dose to bladder and rectum in 51% and 53% treatment fractions, respectively. The cumulative dose over five fractions, ∑D( T r e s $T_{res}$ + R u n c o r r $R_{uncorr}$ ) and ∑D( T r e s $T_{res}$ ), was always within 5% of the planned dose for all four structures for every patient. CONCLUSIONS The dosimetric impact of tumor rotation on a large prostate cancer patient cohort was quantified in this study. These results suggest that the standard 3-5 mm CTV-PTV margin was sufficient to account for the intrafraction prostate rotation observed for this cohort of patients, provided an appropriate gating threshold was applied to correct for translational motion. Residual dose errors due to uncorrected prostate rotation were small in magnitude, which may be corrected using different treatment adaptation strategies to further improve the dosimetric accuracy.
Collapse
Affiliation(s)
- Chandrima Sengupta
- ACRF Image X Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Simon Skouboe
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Ravkilde
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Doan Trang Nguyen
- ACRF Image X Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Peter B Greer
- Department of Radiation Oncology, Calvary Mater Newcastle, Waratah, New South Wales, Australia
| | - Trevor Moodie
- Crown Princess Mary Cancer Center, Sydney, New South Wales, Australia
| | | | - Amy J Hayden
- Crown Princess Mary Cancer Center, Sydney, New South Wales, Australia
| | - Sandra Turner
- Crown Princess Mary Cancer Center, Sydney, New South Wales, Australia
| | - Shankar Siva
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - Keen-Hun Tai
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jarad Martin
- Department of Radiation Oncology, Calvary Mater Newcastle, Waratah, New South Wales, Australia
| | - Jeremy T Booth
- Northern Sydney Cancer Center, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Ricky O'Brien
- ACRF Image X Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Paul J Keall
- ACRF Image X Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
All S, Zhao B, Montalvo S, Maxwell C, Johns C, Gu X, Rahimi A, Alluri P, Parsons D, Chiu T, Schroeder S, Kim DN. Feasibility and efficacy of active breathing coordinator assisted deep inspiration breath hold technique for treatment of locally advanced breast cancer. J Appl Clin Med Phys 2022; 24:e13893. [PMID: 36585853 PMCID: PMC9924105 DOI: 10.1002/acm2.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Active breathing coordinator (ABC)-assisted deep inspiration breath hold (DIBH) is an important organ sparing radiation therapy (RT) technique for left-sided breast cancer patients. Patients with advanced breast cancer undergoing chest wall and regional nodal irradiation often require a field matching technique. While field matching has been demonstrated to be safe and effective in free breathing patients, its safety and accuracy in DIBH/ABC use has not been previously reported. PURPOSE To report the accuracy, feasibility, and safety of field matching with ABC/DIBH for patients receiving breast/chest wall irradiation with nodal irradiation using a three-field technique. METHODS From December 2012 to May 2018, breast cancer patients undergoing ABC/DIBH-based RT at a single institution were reviewed. For each fraction, the amount of overlap/gap between the supraclavicular and the tangential field were measured and recorded. Patient characteristics, including acute and delayed skin toxicities, were analyzed. RESULTS A total of 202 patients utilized ABC/DIBH and 4973 fractions had gap/overlap measurements available for analysis. The average gap/overlap measured at junction was 0.28 mm ± 0.99 mm. A total of 72% of fractions had no measurable gap/overlap (0 mm), while 5.6% had an overlap and 22.7% a gap. There was no significant trend for worsening or improvement of gap/overlap measurements with increasing fraction number per patient. OSLD measurements were compared to the planned dose. The median dose 1 cm above the junction was 106% ± 7% of planned dose (range 94%-116%). One centimeter below the junction, the median dose was 114% ± 11% of planned dose (range 95%-131%). At the junction, the median dose was 106% ± 16.3% of planned dose (range 86%-131%). Acute skin toxicity was similar to historically reported values (grade 3, 5.4%, grade 4, 0%). CONCLUSION ABC-assisted DIBH is a safe and technically feasible method of delivering RT in the setting of complex matching field technique for breast and regional nodal treatments.
Collapse
Affiliation(s)
- Sean All
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Bo Zhao
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Steven Montalvo
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | | | | | - Xuejun Gu
- Department of Radiation OncologyStanford UniversityPalo AltoCaliforniaUSA
| | - Asal Rahimi
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Prasanna Alluri
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - David Parsons
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Tsuicheng Chiu
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Samuel Schroeder
- UnityPoint Health Department of Radiation OncologyJohn Stoddard Cancer CenterDes MoinesIowaUSA
| | - D. Nathan Kim
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
6
|
Zeng C, Lu W, Reyngold M, Cuaron JJ, Li X, Cerviño L, Li T. Intrafractional accuracy and efficiency of a surface imaging system for deep inspiration breath hold during ablative gastrointestinal cancer treatment. J Appl Clin Med Phys 2022; 23:e13740. [PMID: 35906884 PMCID: PMC9680575 DOI: 10.1002/acm2.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/18/2022] [Accepted: 07/15/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Beam gating with deep inspiration breath hold (DIBH) usually depends on some external surrogate to infer internal target movement, and the exact internal movement is unknown. In this study, we tracked internal targets and characterized residual motion during DIBH treatment, guided by a surface imaging system, for gastrointestinal cancer. We also report statistics on treatment time. METHODS AND MATERIALS We included 14 gastrointestinal cancer patients treated with surface imaging-guided DIBH volumetrically modulated arc therapy, each with at least one radiopaque marker implanted near or within the target. They were treated in 25, 15, or 10 fractions. Thirteen patients received treatment for pancreatic cancer, and one underwent separate treatments for two liver metastases. The surface imaging system monitored a three-dimensional surface with ± 3 mm translation and ± 3° rotation threshold. During delivery, a kilovolt image was automatically taken every 20° or 40° gantry rotation, and the internal marker was identified from the image. The displacement and residual motion of the markers were calculated. To analyze the treatment efficiency, the treatment time of each fraction was obtained from the imaging and treatment timestamps in the record and verify system. RESULTS Although the external surface was monitored and limited to ± 3 mm and ± 3°, significant residual internal target movement was observed in some patients. The range of residual motion was 3-21 mm. The average displacement for this cohort was 0-3 mm. In 19% of the analyzed images, the magnitude of the instantaneous displacement was > 5 mm. The mean treatment time was 17 min with a standard deviation of 4 min. CONCLUSIONS Precaution is needed when applying surface image guidance for gastrointestinal cancer treatment. Using it as a solo DIBH technique is discouraged when the correlation between internal anatomy and patient surface is limited. Real-time radiographic verification is critical for safe treatments.
Collapse
Affiliation(s)
- Chuan Zeng
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Wei Lu
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Marsha Reyngold
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - John J. Cuaron
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Xiang Li
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Laura Cerviño
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Tianfang Li
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| |
Collapse
|
7
|
Development of a novel detection method for changes in lung conditions during radiotherapy using a temporal subtraction technique. Phys Eng Sci Med 2021; 44:1341-1350. [PMID: 34704221 DOI: 10.1007/s13246-021-01070-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023]
Abstract
We aimed to develop a novel method of detecting changes in lung conditions during radiotherapy using temporal subtraction technique. Twenty patients who underwent radiotherapy were retrospectively assessed by calculating optimal direct similarity error (ODSE) between initial and mid-treatment registered images. Patients were grouped according to region in tumor size and atelectasis for lung of < 20 or ≥ 20 cm3, which analyzed two field regions (1024 × 768 pixels, 512 × 512 pixels). Correlations between ODSE and changes in lung conditions were analyzed based on effect of radiation dose; receiver operating characteristic (ROC) analysis was performed to evaluate whether changes can be detected during treatment period. The ODSE of 1024 × 768 pixels was changed to 1.00 (0.28-3.48) for lung lesion size of < 20 cm3 and 1.86 (0.55-6.58) for the ≥ 20 cm3 lung lesion size. ODSE of 512 × 512 pixels was 1.03 (0.40-2.12) for the region in tumor size and atelectasis of < 20 cm3 and 1.90 (0.39-27.8) for the ≥ 20 cm3 lung lesion size. The region under the curve values from ROC analysis were 0.796 (1024 × 768 pixels) and 0.983 (512 × 512 pixels). A novel method can visually and numerically help to detect changes in lung condition at early treatment stages. Using this method, difference between plan and actual positional relationship for target and risk organs that cannot be predicted at the time of planning can be avoided, ensuring high safety and accuracy in lung radiotherapy.
Collapse
|
8
|
Target motion management in breast cancer radiation therapy. Radiol Oncol 2021; 55:393-408. [PMID: 34626533 PMCID: PMC8647788 DOI: 10.2478/raon-2021-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Background Over the last two decades, breast cancer remains the main cause of cancer deaths in women. To treat this type of cancer, radiation therapy (RT) has proved to be efficient. RT for breast cancer is, however, challenged by intrafractional motion caused by respiration. The problem is more severe for the left-sided breast cancer due to the proximity to the heart as an organ-at-risk. While particle therapy results in superior dose characteristics than conventional RT, due to the physics of particle interactions in the body, particle therapy is more sensitive to target motion. Conclusions This review highlights current and emerging strategies for the management of intrafractional target motion in breast cancer treatment with an emphasis on particle therapy, as a modern RT technique. There are major challenges associated with transferring real-time motion monitoring technologies from photon to particles beams. Surface imaging would be the dominant imaging modality for real-time intrafractional motion monitoring for breast cancer. The magnetic resonance imaging (MRI) guidance and ultra high dose rate (FLASH)-RT seem to be state-of-the-art approaches to deal with 4D RT for breast cancer.
Collapse
|
9
|
Wang H, Xu Z, Grantham K, Zhou Y, Cui T, Zhang Y, Liu B, Wang X, Vergalasova I, Reyhan M, Weiner J, Danish SF, Yue N, Nie K. Performance assessment of two motion management systems for frameless stereotactic radiosurgery. Strahlenther Onkol 2021; 197:150-157. [PMID: 33047151 PMCID: PMC7840652 DOI: 10.1007/s00066-020-01688-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND/PURPOSE Frameless stereotactic radiosurgery (SRS) requires dedicated systems to monitor patient motion in order to avoid inaccurate radiation delivery due to involuntary shifts. The purpose of this study is to assess the accuracy and sensitivity of two distinct motion monitoring systems used for frameless SRS. METHODS A surface image-guided system known as optical surface monitoring system (OSMS), and a fiducial marker-based system known as high definition motion management (HDMM) as part of the latest Gamma Knife Icon® were compared. A 3D printer-based cranial motion phantom was developed to evaluate the accuracy and sensitivity of these two systems in terms of: (1) the capability to recognize predefined shifts up to 3 cm, and (2) the capability to recognize predefined speeds up to 3 cm/s. The performance of OSMS, in terms of different reference surfaces, was also evaluated. RESULTS Translational motion could be accurately detected by both systems, with an accuracy of 0.3 mm for displacement up to 1 cm, and 0.5 mm for larger displacements. The reference surface selection had an impact on OSMS performance, with flat surface resulting in less accuracy. HDMM was in general more sensitive when compared with OSMS in capturing the motion, due to its faster frame rate, but a delay in response was observed with faster speeds. Both systems were less sensitive in detection of superior-inferior motion when compared to lateral or vertical displacement directions. CONCLUSION Translational motion can be accurately and sensitively detected by OSMS and HDMM real-time monitoring systems. However, performance variations were observed along different motion directions, as well as amongst the selection of reference images. Caution is needed when using real-time monitoring systems for frameless SRS treatment.
Collapse
Affiliation(s)
- Hao Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, 195 Little Albany St., New Brunswick, NJ, USA
| | - Zhiyong Xu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kevin Grantham
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, 195 Little Albany St., New Brunswick, NJ, USA
| | - Yongkang Zhou
- Department of Radiation Oncology, Zhongshan Hospital, Shanghai, China
| | - Taoran Cui
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, 195 Little Albany St., New Brunswick, NJ, USA
| | - Yin Zhang
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, 195 Little Albany St., New Brunswick, NJ, USA
| | - Bo Liu
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, 195 Little Albany St., New Brunswick, NJ, USA
| | - Xiao Wang
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, 195 Little Albany St., New Brunswick, NJ, USA
| | - Irina Vergalasova
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, 195 Little Albany St., New Brunswick, NJ, USA
| | - Meral Reyhan
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, 195 Little Albany St., New Brunswick, NJ, USA
| | - Joseph Weiner
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, 195 Little Albany St., New Brunswick, NJ, USA
| | - Shabbar F Danish
- Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Ning Yue
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, 195 Little Albany St., New Brunswick, NJ, USA
| | - Ke Nie
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, 195 Little Albany St., New Brunswick, NJ, USA.
| |
Collapse
|
10
|
Zeng C, Li X, Lu W, Reyngold M, Gewanter RM, Cuaron JJ, Yorke E, Li T. Accuracy and efficiency of respiratory gating comparable to deep inspiration breath hold for pancreatic cancer treatment. J Appl Clin Med Phys 2020; 22:218-225. [PMID: 33378792 PMCID: PMC7856516 DOI: 10.1002/acm2.13137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/06/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Deep inspiration breath hold (DIBH) and respiratory gating (RG) are widely used to reduce movement of target and healthy organs caused by breathing during irradiation. We hypothesized that accuracy and efficiency comparable to DIBH can be achieved with RG for pancreas treatment. Methods and Materials Twenty consecutive patients with pancreatic cancer treated with DIBH (eight) or RG (twelve) volumetric modulated arc therapy during 2017–2019 were included in this study, with radiopaque markers implanted near or in the targets. Seventeen patients received 25 fractions, while the other three received 15 fractions. Only patients who could not tolerate DIBH received RG treatment. While both techniques relied on respiratory signals from external markers, internal target motions were monitored with kV X‐ray imaging during treatment. A 3‐mm external gating window was used for DIBH treatment; RG treatment was centered on end‐expiration with a duty cycle of 40%, corresponding to an external gating window of 2–3 mm. During dose delivery, kV images were automatically taken every 20◦ or 40◦ gantry rotation, from which internal markers were identified. The marker displacement from their initial positions and the residual motion amplitudes were calculated. For the analysis of treatment efficiency, the treatment time of every session was calculated from the motion management waveform files recorded at the treatment console. Results Within one fraction, the displacement was 0–5 mm for DIBH and 0–6 mm for RG. The average magnitude of displacement for each patient during the entire course of treatment ranged 0–3 mm for both techniques. No statistically significant difference in displacement or residual motion was observed between the two techniques. The average treatment time was 15 min for DIBH and 17 min for RG, with no statistical significance. Conclusions The accuracy and efficiency were comparable between RG and DIBH treatment for pancreas irradiation. RG is a feasible alternative strategy to DIBH.
Collapse
Affiliation(s)
- Chuan Zeng
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Lu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marsha Reyngold
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard M Gewanter
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John J Cuaron
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tianfang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
11
|
Anastasi G, Bertholet J, Poulsen P, Roggen T, Garibaldi C, Tilly N, Booth JT, Oelfke U, Heijmen B, Aznar MC. Patterns of practice for adaptive and real-time radiation therapy (POP-ART RT) part I: Intra-fraction breathing motion management. Radiother Oncol 2020; 153:79-87. [PMID: 32585236 PMCID: PMC7758783 DOI: 10.1016/j.radonc.2020.06.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE The POP-ART RT study aims to determine to what extent and how intra-fractional real-time respiratory motion management (RRMM) and plan adaptation for inter-fractional anatomical changes (ART), are used in clinical practice and to understand barriers to implementation. Here we report on part I: RRMM. MATERIAL AND METHODS A questionnaire was distributed worldwide to assess current clinical practice, wishes for expansion or new implementation and barriers to implementation. RRMM was defined as inspiration/expiration gating in free-breathing or breath-hold, or tracking where the target and the beam are continuously realigned. RESULTS The questionnaire was completed by 200 centres from 41 countries. RRMM was used by 68% of respondents ('users') for a median (range) of 2 (1-6) tumour sites. Eighty-one percent of users applied inspiration breath-hold in at least one tumour site (breast: 96%). External marker was used to guide RRMM by 61% of users. KV/MV imaging was frequently used for liver and pancreas (with fiducials) and for lung (with or without fiducials). Tracking was mainly performed on robotic linacs with hybrid internal-external monitoring. For breast and lung, approximately 75% of respondents used or wished to implement RRMM, which was lower for liver (44%) and pancreas (27%). Seventy-one percent of respondents wished to implement RRMM for a new tumour site. Main barriers were human/financial resources and capacity on the machine. CONCLUSION Sixty-eight percent of respondents used RRMM and 71% wished to implement RRMM for a new tumour site. The main barriers to implementation were human/financial resources and capacity on treatment machines.
Collapse
Affiliation(s)
- Gail Anastasi
- St. Luke's Cancer Centre, Royal Surrey Foundation Trust, Radiotherapy Physics, Guildford, United Kingdom.
| | - Jenny Bertholet
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Joint Department of Physics, London, United Kingdom; Division of Medical Radiation Physics, Department of Radiation Oncology, Inselspital, Bern University Hospital, Switzerland
| | - Per Poulsen
- Aarhus University Hospital, Department of Oncology and Danish Center for Particle Therapy, Aarhus, Denmark
| | - Toon Roggen
- Varian Medical Systems Imaging Laboratory GmbH, Applied Research, Dättwil AG, Switzerland
| | - Cristina Garibaldi
- European Institute of Oncology IRCCS, IEO-Unit of Radiation Research, Milan, Italy
| | - Nina Tilly
- Elekta Instruments AB, Stockholm, Sweden; Medical Radiation Physics, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Jeremy T Booth
- Royal North Shore Hospital, Northern Sydney Cancer Centre, Australia
| | - Uwe Oelfke
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Joint Department of Physics, London, United Kingdom
| | - Ben Heijmen
- Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam, Netherlands
| | - Marianne C Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom; Nuffield Department of Population Health, University of Oxford, United Kingdom
| |
Collapse
|
12
|
Abubakar A, Zin HM. Characterisation of Time-of-Flight (ToF) imaging system for application in monitoring deep inspiration breath-hold radiotherapy (DIBH-RT). Biomed Phys Eng Express 2020; 6. [DOI: 10.1088/2057-1976/abc635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022]
Abstract
Abstract
The purpose of this study is to develop a method for characterisation of time-of-flight (ToF) imaging system for application in deep inspiration breath-hold radiotherapy (DIBH-RT). The performance of an Argos 3D P330 ToF camera (Bluetechnix, Austria) was studied for patient surface monitoring during DIBH-RT using a phantom to simulate the intra-patient and inter-patient stability of the camera. Patient setup error was also simulated by positioning the phantom at predefined shift positions (2, 5 and 10 mm) from the isocentre. The localisation accuracy of the phantom was measured using ToF imaging system and repeated using CBCT imaging alone (CBCT) and simultaneously using ToF imaging during CBCT imaging (ToF-CBCT). The mean and SD of the setup errors obtained from each of the imaging methods were calculated. Student t-test was used to compare the mean setup errors. Correlation and Bland-Altman analysis were also performed. The intra-and inter-patient stability of the camera were within 0.31 mm and 0.74 mm, respectively. The localisation accuracy in terms of the mean ±SD of the measured setup errors were 0.34 ± 0.98 mm, 0.12 ± 0.34 mm, and −0.24 ± 1.42 mm for ToF, CBCT and ToF-CBCT imaging, respectively. A strong correlation was seen between the phantom position and the measured position using ToF (r = 0.96), CBCT (r = 0.99) as well as ToF-CBCT (r = 0.92) imaging. The limits of agreement from Bland Altman analysis between the phantom position and ToF, CBCT and ToF-CBCT measured positions were −1.52, 2.31 mm, −0.55, 0.78 mm; and −3.03, 2.55 mm, respectively. The sensor shows good stability and high accuracy comparable to similar sensors in the market. The method developed is useful for characterisation of an optical surface imaging system for application in monitoring DIBH-RT.
Collapse
|
13
|
Pallotta S, Kugele M, Redapi L, Ceberg S. Validation of a commercial deformable image registration for surface-guided radiotherapy using an ad hoc-developed deformable phantom. Med Phys 2020; 47:6310-6318. [PMID: 33034065 DOI: 10.1002/mp.14527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/31/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The use of optical surface systems (OSSs) for patient setup verification in external radiation therapy is increasing. To manage potential deformations in a patient's anatomy, a novel deformable image registration (DIR) tool has been applied in a commercial OSS. In this study we investigate the accuracy of the DIR as compared to rigid image registration (RR). METHODS AND MATERIALS The positioning accuracy of the DIR and RR implemented in the OSS was investigated using an ad hoc-developed anthropomorphic deformable phantom, named Mary. The phantom consists of 33 slices of expanded polystyrene slabs shaped thus to simulate part of a female body. Anatomical details, simulating the ribs and spinal cord, together with 10 inner targets at different depths are included in thorax and abdominal parts. Mary is capable of realistic body movements and deformations, such as head and arm rotations, body torsion and moderate breast/abdomen swelling. The accuracy of DIR and RR was investigated for four internal targets after deliberately deforming the phantom nine times. Breast and abdomen enlargements and torsions around x, y, and z axes were applied. For reference purposes, rigid displacements (where Mary's anatomy was kept intact) were included. The phantom was positioned on the linac couch under the OSS guidance and for each target and displacement a CBCT was acquired. The accuracy of DIR and RR was assessed evaluating the difference in means of absolute values between CBCT and the OSS registration parameters (lateral, longitudinal, vertical, rot, pitch, and roll), using both a reference surface extracted from CT (CTr) or acquired with the OSS (OSSr). A comparison of the four different combinations, DIR + OSSr, DIR + CTr, RR + OSSr, and RR + CTr, was carried out to evaluate the position accuracy for the various combinations. Finally, the positioning accuracy of the different target positions using only OSSr was investigated for the DIR. A paired sample Wilcoxon signed-rank test (P < 0.05) and a two-tailed Mann-Whitney test (P < 0.05) were carried out. RESULTS The DIR in combination with OSSr showed significantly (P < 0.05) improved positioning accuracy in the lateral and longitudinal directions and in pitch, compared to RR, when deformations were applied to Mary. The positioning accuracy improved from 1.9 ± 1.5 mm, 1.1 ± 0.8 mm to 1.1 ± 1.2 mm, 0.6 ± 0.5 mm in lateral and longitudinal directions, respectively, and from 0.8 ± 0.6° to 0.4 ± 0.4° in pitch, using DIR compared to RR. Both the DIR and RR showed a similar positioning accuracy when rigid displacements of Mary were applied. For DIR, the OSSr generally showed improved calculation accuracy compared to CTr. Independent of the reference image used, the target position influenced the registration accuracy, and hence, one target could not be evaluated using RR due to its inability to calculate the correct position. CONCLUSIONS Improved positioning accuracy was observed for DIR with respect to RR when deformations of Mary's anatomy were applied. For both DIR and RR, improved positioning accuracy was observed using OSSr as compared to CTr. The position of the target inside the phantom influenced the positioning accuracy for DIR.
Collapse
Affiliation(s)
- Stefania Pallotta
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy.,Medical Physics Unit AOU Careggi, Florence, Italy
| | - Malin Kugele
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Laura Redapi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Sofie Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Allen AM, Ceder YK, Shochat T, Fenig E, Popovtzer A, Bragilofsky D, Alfassy A, Allon H. CPAP (Continuous Positive Airway Pressure) is an effective and stable solution for heart sparing radiotherapy of left sided breast cancer. Radiat Oncol 2020; 15:59. [PMID: 32143658 PMCID: PMC7060550 DOI: 10.1186/s13014-020-01505-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/24/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Limiting the heart dose in left sided breast cancer radiotherapy is critical. We sought to study the effect of using CPAP (continuous positive airway pressure) as an aid in reducing heart dose in breast cancer radiotherapy. METHODS Patients with left sided breast cancer receiving adjuvant radiotherapy were enrolled on a prospective IRB (institutional review board) approved clinical trial utilizing CPAP during radiotherapy. Each patient was simulated and planned with and without CPAP and the best dosimetric results determined the patient's treatment. Data on the differences in lung and heart volume and position as well as boost cavity position with and without CPAP were analyzed. RESULTS Twenty-four women from 10/16 to 10/18 were enrolled. Seven patients were not treated on study; only two of these were due to treatment issues. Median age was 54 years. 70% had breast only radiation and 30% were treated to breast\CW (chest wall) and regional nodes. The median lung volume with CPAP was 60% larger than without CPAP. (1637 vs. 996 cc) p < 0.001. The median heart volume decreased 12% with CPAP. (338 vs. 382 cc) In regards to the DVH, CPAP decreased mean heart dose from 3.02 to 1.6Gy (p = .0075) and V20 of the lungs from 17.1 to 13.8 with CPAP but this was not significant. CONCLUSION CPAP assisted radiotherapy was tolerable and produced superior treatment plans in left sided breast cancer. This method is worthy of further investigation as a method to normal tissue sparing treatment of left sided breast cancer patients.
Collapse
Affiliation(s)
- Aaron M Allen
- Department of Radiotherapy, Davidoff Center Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University, 49 Jabotinksi St, 49100, Petach Tikvah, Israel.
| | - Yasmin Korzets Ceder
- Department of Radiotherapy, Davidoff Center Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University, 49 Jabotinksi St, 49100, Petach Tikvah, Israel
| | - Tzippy Shochat
- Department of Radiotherapy, Davidoff Center Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University, 49 Jabotinksi St, 49100, Petach Tikvah, Israel
| | - Eyal Fenig
- Department of Radiotherapy, Davidoff Center Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University, 49 Jabotinksi St, 49100, Petach Tikvah, Israel
| | - Aron Popovtzer
- Department of Radiotherapy, Davidoff Center Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University, 49 Jabotinksi St, 49100, Petach Tikvah, Israel
| | - Dimitry Bragilofsky
- Department of Radiotherapy, Davidoff Center Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University, 49 Jabotinksi St, 49100, Petach Tikvah, Israel
| | - Adi Alfassy
- Department of Radiotherapy, Davidoff Center Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University, 49 Jabotinksi St, 49100, Petach Tikvah, Israel
| | - Helena Allon
- Department of Radiotherapy, Davidoff Center Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University, 49 Jabotinksi St, 49100, Petach Tikvah, Israel
| |
Collapse
|
15
|
Mitchell S, Lee H, DuPree BB, Beyer DC, Ulissey M, Grobmyer SR, Gass J, Boolbol S, Storm-Dickerson T. A novel, adaptable, radiographically opaque, multi-plane continuous filament marker for optimizing tissue identification, radiation planning, and radiographic follow-up. Gland Surg 2020; 8:609-617. [PMID: 32042667 DOI: 10.21037/gs.2019.10.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background In breast cancer treatment, marking the tumor bed is an important aspect of the surgical component of therapy. Clear delineation of the tumor bed allows radiation oncologists a defined target for planning and delivering postoperative radiation therapy (XRT). Tumor bed marking also allows radiographic follow-up of the tumor bed on subsequent breast imaging. The aim of this assessment is to evaluate the ease and feasibility of utilizing a tumor bed filament marker (VeraFormÒ, Videra Surgical inc., USA) as a marker in post-operative benign surgical sites and malignant breast surgical tumor beds in breast cancer surgery. Methods The filament marker is a novel radiopaque surgical filament that in lieu of clips and other markers is implanted in the surgical tumor bed during breast surgery. Following development of the filament marker, the researchers used breast phantoms and radiographic images to develop a series of geometric patterns of placement options that optimize comprehensive multi-plane radiographic interpretation of the exact tumor bed or surgical margin. Three breast surgeons at 3 separate institutions then used this filament as a continuous multi-plane marker in 20 patients during breast conservation surgery. In these patients, the filament marker was thus used to mark the tumor bed (breast cancer surgery) or surgical site (benign breast disease) instead of the more traditional devices such as clips or other metallic open framework devices. We then assessed 2 important factors related to this device; (I) the ease, feasibility, and accuracy of in vivo placement with oncoplastic and non-oncoplastic breast conservation surgery techniques; (II) the radiographic footprint this device left on standard imaging protocols of post-operative mammogram (MMG), computed tomography (CT) scan, breast magnetic resonance imaging (MRI) examinations, and ultrasounds (USs) for both routine follow-up imaging and for standard radiation planning. Results There were no adverse events reported with the use of this device. The cases were then reviewed by a multidisciplinary team that included the original surgeon, a breast radiologist, and radiation oncologist. Their unanimous evaluation was that the filament marker clearly delineated all sides and planes of the tumor bed (cancer surgery) or surgical site (benign disease). Regardless of surgical technique utilized, this information provided precise 3D guidance for radiation planning and delivery as well as radiographic follow-up. The surgeons involved reported that delineating the bed with the filament marker was a quick and easy procedure and did not interfere with performing the planned surgical technique. Radiologists, surgeons, and radiation oncologists found that the filament marker was not only radiographically opaque on CT and MMG, but also caused no significant artifact on CT, MRI, US, or MMG. Conclusions The continuous multi-plane filament marker is a new device that fulfills the heretofore unmet need for safe and improved tumor bed and tissue site marking. It is an easy to place, non-palpable continuous multi-plane radiographic opaque tissue marker that seems to better delineate the tumor bed, regardless of type of breast surgery performed, while providing a more accurate 3D image for radiation planning and radiographic follow-up on MMG MRI, CT and US.
Collapse
Affiliation(s)
- Sunny Mitchell
- Department of Surgery, Montefiore Nyack Hospital, Nyack, NY, USA
| | - Henry Lee
- Department of Radiation Oncology; New York Presbyterian-Lawrence Hospital, Columbia University College of Physicians & Surgeons, Bronxville, NY, USA
| | - Beth Baughman DuPree
- Sedona Breast care, Department of Surgery, Cancer Centers of Northern Arizona Healthcare, Sedona, AZ, USA
| | - David C Beyer
- Department of Radiation Oncology, Cancer Centers of Northern Arizona Healthcare, Sedona, AZ, USA
| | - Michael Ulissey
- Department of Radiology, The University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Stephen R Grobmyer
- Oncology Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jennifer Gass
- Department of Surgery, Women & Infants Hospital, Brown University, Providence, RI, USA
| | - Susan Boolbol
- Department of Surgery, Mount Sinai Beth Israel, Icahn School of Medicine, New York, NY, USA
| | | |
Collapse
|
16
|
Bertholet J, Knopf A, Eiben B, McClelland J, Grimwood A, Harris E, Menten M, Poulsen P, Nguyen DT, Keall P, Oelfke U. Real-time intrafraction motion monitoring in external beam radiotherapy. Phys Med Biol 2019; 64:15TR01. [PMID: 31226704 PMCID: PMC7655120 DOI: 10.1088/1361-6560/ab2ba8] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 06/21/2019] [Indexed: 12/25/2022]
Abstract
Radiotherapy (RT) aims to deliver a spatially conformal dose of radiation to tumours while maximizing the dose sparing to healthy tissues. However, the internal patient anatomy is constantly moving due to respiratory, cardiac, gastrointestinal and urinary activity. The long term goal of the RT community to 'see what we treat, as we treat' and to act on this information instantaneously has resulted in rapid technological innovation. Specialized treatment machines, such as robotic or gimbal-steered linear accelerators (linac) with in-room imaging suites, have been developed specifically for real-time treatment adaptation. Additional equipment, such as stereoscopic kilovoltage (kV) imaging, ultrasound transducers and electromagnetic transponders, has been developed for intrafraction motion monitoring on conventional linacs. Magnetic resonance imaging (MRI) has been integrated with cobalt treatment units and more recently with linacs. In addition to hardware innovation, software development has played a substantial role in the development of motion monitoring methods based on respiratory motion surrogates and planar kV or Megavoltage (MV) imaging that is available on standard equipped linacs. In this paper, we review and compare the different intrafraction motion monitoring methods proposed in the literature and demonstrated in real-time on clinical data as well as their possible future developments. We then discuss general considerations on validation and quality assurance for clinical implementation. Besides photon RT, particle therapy is increasingly used to treat moving targets. However, transferring motion monitoring technologies from linacs to particle beam lines presents substantial challenges. Lessons learned from the implementation of real-time intrafraction monitoring for photon RT will be used as a basis to discuss the implementation of these methods for particle RT.
Collapse
Affiliation(s)
- Jenny Bertholet
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
- Author to whom any correspondence should be
addressed
| | - Antje Knopf
- Department of Radiation Oncology,
University Medical Center
Groningen, University of Groningen, The
Netherlands
| | - Björn Eiben
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Jamie McClelland
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Alexander Grimwood
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Emma Harris
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Martin Menten
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Per Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus,
Denmark
| | - Doan Trang Nguyen
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
- School of Biomedical Engineering,
University of Technology
Sydney, Sydney, Australia
| | - Paul Keall
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
| | - Uwe Oelfke
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| |
Collapse
|
17
|
Zeng C, Xiong W, Li X, Reyngold M, Gewanter RM, Cuaron JJ, Yorke ED, Li T. Intrafraction tumor motion during deep inspiration breath hold pancreatic cancer treatment. J Appl Clin Med Phys 2019; 20:37-43. [PMID: 30933428 PMCID: PMC6523018 DOI: 10.1002/acm2.12577] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose Beam gating with deep inspiration breath hold (DIBH) has been widely used for motion management in radiotherapy. Normally it relies on some external surrogate for estimating the internal target motion, while the exact internal motion is unknown. In this study, we used the intrafraction motion review (IMR) application to directly track an internal target and characterized the residual motion during DIBH treatment for pancreatic cancer patients through their full treatment courses. Methods and Materials Eight patients with pancreatic cancer treated with DIBH volumetric modulated arc therapy in 2017 and 2018 were selected for this study, each with some radiopaque markers (fiducial or surgical clips) implanted near or inside the target. The Varian Real‐time Position Management (RPM) system was used to monitor the breath hold, represented by the anterior‐posterior displacement of an external surrogate, namely reflective markers mounted on a plastic block placed on the patient's abdomen. Before each treatment, a cone beam computed tomography (CBCT) scan under DIBH was acquired for patient setup. For scan and treatment, the breath hold reported by RPM had to lie within a 3 mm window. IMR kV images were taken every 20° or 40° gantry rotation during dose delivery, resulting in over 5000 images for the cohort. The internal markers were manually identified in the IMR images. The residual motion amplitudes of the markers as well as the displacement from their initial positions located in the setup CBCT images were analyzed. Results Even though the external markers indicated that the respiratory motion was within 3 mm in DIBH treatment, significant residual internal target motion was observed for some patients. The range of average motion was from 3.4 to 7.9 mm, with standard deviation ranging from 1.2 to 3.5 mm. For all patients, the target residual motions seemed to be random with mean positions around their initial setup positions. Therefore, the absolute target displacement relative to the initial position was small during DIBH treatment, with the mean and the standard deviation 0.6 and 2.9 mm, respectively. Conclusions Internal target motion may differ from external surrogate motion in DIBH treatment. Radiographic verification of target position at the beginning and during each fraction is necessary for precise RT delivery. IMR can serve as a useful tool to directly monitor the internal target motion.
Collapse
Affiliation(s)
- Chuan Zeng
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Weijun Xiong
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiang Li
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - John J Cuaron
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellen D Yorke
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tianfang Li
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|