1
|
Miyasaka Y, Lee SH, Souda H, Chai H, Ishizawa M, Ono T, Ono T, Sato H, Iwai T. Investigation of factors related to treatment planning of x-ray SBRT and scanning carbon-ion radiation therapy for early-stage lung cancer patients. J Appl Clin Med Phys 2025; 26:e14618. [PMID: 39935298 PMCID: PMC11969111 DOI: 10.1002/acm2.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/25/2024] [Accepted: 12/01/2024] [Indexed: 02/13/2025] Open
Abstract
This study aimed to compare the treatment plans of x-ray SBRT and scanning carbon ion radiation therapy (CIRT) for localized lung tumors, and to evaluate the dose dependence of tumor size tumor-to-heart distance. For phantom verification, we used a chest phantom with a spherical simulated tumor. Treatment plans for 3-dimensional conformal radiation therapy (3D-CRT), volumetric modulated arc therapy (VMAT), and CIRT were created. GTVs were created in sizes ranging from 0.5 to 5 cm in diameter, and the dependence of the lung dose on GTV diameter was evaluated for each treatment plan. For patient validation, 30 cases of localized lung tumors were analyzed. 3D-CRT, VMAT, and CIRT treatment plans were developed, and DVH parameters were evaluated for each GTV size and GTV-to-heart distance. In both phantom and patient validations, the OAR doses were the lowest for CIRT. The lung dose increased with increasing GTV diameter for all three treatment plans. CIRT had the smallest ratio of lung dose increase to GTV diameter increase among the three treatment plans. Heart dose in CIRT was independent of GTV size and GTV-to-heart distance Conclusions: The results of the present study suggested that the use of scanning CIRT can reduce the OAR dose while guaranteeing the tumor dose compared to x-ray SBRT. In addition, it was suggested that CIRT can treat patients with large GTV sizes while maintaining low lung and heart dose.
Collapse
Affiliation(s)
- Yuya Miyasaka
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Sung Hyun Lee
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Hikaru Souda
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Hongbo Chai
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Miyu Ishizawa
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Takuya Ono
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Takashi Ono
- Department of RadiologyYamagata University Faculty of MedicineYamagataJapan
| | - Hiraku Sato
- Department of RadiologyYamagata University Faculty of MedicineYamagataJapan
| | - Takeo Iwai
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| |
Collapse
|
2
|
Mahmoudi F, Chegeni N, Bagheri A, Danyaei A, Razzaghi S, Arvandi S, Saki Malehi A, Arjmand B, Shamsi A, Mohiuddin M. Optimization of the Dose-Volume Effect Parameter "a" in EUD-Based TCP Models for Breast Cancer Radiotherapy. Technol Cancer Res Treat 2025; 24:15330338251329103. [PMID: 40165476 PMCID: PMC11960152 DOI: 10.1177/15330338251329103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/08/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
IntroductionRadiotherapy treatment plans traditionally rely on physical indices like Dose-volume histograms and spatial dose distributions. While these metrics assess dose delivery, they lack consideration for the biological effects on tumors and healthy tissues. To address this, radiobiological models like tumor control probability (TCP) and Normal tissue complications probability (NTCP) are increasingly incorporated to evaluate treatment efficacy and potential complications. This study aimed to assess the predictive power of radiobiological models for TCP in breast cancer radiotherapy and provide insights into the model selection and parameter optimization.MethodsIn this retrospective observational study, two commonly used models, the Linear-Poisson and Equivalent uniform dose (EUD)-based models, were employed to calculate TCP for 30 patients. Different radiobiological parameter sets were investigated, including established sets from literature (G1 and G2) and set with an optimized "a" parameter derived from clinical trial data (a1 and a2). Model predictions were compared with clinical outcomes from the START trials.ResultsThe Linear-Poisson model with es lished parameter sets from the literature demonstrated good agreement with clinical data. The standard EUD-based model (a = -7.2) significantly underestimated TCP. While both models exhibited some level of independence from the specific parameter sets (G1 vs. G2), the EUD-based model was susceptible to the "a" parameter value. Optimization suggests a more accurate "a" value closer to -2.57 and -5.65.ConclusionThis study emphasizes the importance of clinically relevant radiobiological parameters for accurate TCP prediction and optimizing the "a" parameter in the EUD-based model based on clinical data (a1 and a2) improved its predictive accuracy significantly.
Collapse
Affiliation(s)
- Farshid Mahmoudi
- School of Allied Medical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nahid Chegeni
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Bagheri
- Department of Radiation Oncology, Faculty of Medicine, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Danyaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samira Razzaghi
- Department of Radiation Oncology, Faculty of Medicine, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shole Arvandi
- Department of Radiation Oncology, Faculty of Medicine, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amal Saki Malehi
- Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Biostatistics and Epidemiology, Faculty of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahare Arjmand
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azin Shamsi
- Department of Radiation Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Mohiuddin
- Department of Radiation Oncology, Advocate Lutheran General Hospital, 1700 Lutheran, Park Ridge, Illinois, USA
| |
Collapse
|
3
|
Miyasaka Y, Kawashiro S, Lee SH, Souda H, Ichikawa M, Chai H, Ishizawa M, Ono T, Sato H, Iwai T. Evaluation of the availability of single-position treatment with a rotating gantry and the validity of deformable image registration dose assessment for pancreatic cancer carbon-ion radiotherapy. J Appl Clin Med Phys 2024; 25:e14330. [PMID: 38478368 PMCID: PMC11163482 DOI: 10.1002/acm2.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the clinical acceptability of rotational gantry-based single-position carbon-ion radiotherapy (CIRT) to reduce the gastrointestinal (GI) dose in pancreatic cancer. We also evaluated the usefulness of the deformable image registration (DIR)-based dosimetry method for CIRT. MATERIAL AND METHODS Fifteen patients with pancreatic cancer were analyzed. The treatment plans were developed for four beam angles in the supine (SP plan) and prone (PR plan) positions. In the case of using multiple positions, the treatment plan was created with two angles for each of the supine and prone position (SP + PR plan). Dose evaluation for multiple positions was performed in two ways: by directly adding the values of the DVH parameters for each position treatment plan (DVH sum), and by calculating the DVH parameters from the accumulative dose distribution created using DIR (DIR sum). The D2cc and D6cc of the stomach and duodenum were recorded for each treatment plan and dosimetry method and compared. RESULTS There were no significant differences among any of the treatment planning and dosimetry methods (p > 0.05). The DVH parameters for the stomach and duodenum were higher in the PR plan and SP plan, respectively, and DVH sum tended to be between the SP and PR plans. DVH sum and DIR sum, DVH sum tended to be higher for D2cc and DIR sum tended to be higher for D6cc. CONCLUSION There were no significant differences in the GI dose, which suggests that treatment with a simple workflow performed in one position should be clinically acceptable. In CIRT, DIR-based dosimetry should be carefully considered because of the potential for increased uncertainty due to the steep dose distributions.
Collapse
Affiliation(s)
- Yuya Miyasaka
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Shohei Kawashiro
- Department of Radiation OncologyKanagawa Cancer CenterYokohamaJapan
| | - Sung Hyun Lee
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Hikaru Souda
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Mayumi Ichikawa
- Department of RadiologyYamagata University Faculty of MedicineYamagataJapan
| | - Hongbo Chai
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Miyu Ishizawa
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Takuya Ono
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| | - Hiraku Sato
- Department of RadiologyYamagata University Faculty of MedicineYamagataJapan
| | - Takeo Iwai
- Department of Heavy Particle Medical ScienceYamagata University Graduate School of Medical ScienceYamagataJapan
| |
Collapse
|
4
|
Kargar N, Zeinali A, Molazadeh M. Impact of Dose Calculation Algorithms and Radiobiological Parameters on Prediction of Cardiopulmonary Complications in Left Breast Radiation Therapy. J Biomed Phys Eng 2024; 14:129-140. [PMID: 38628897 PMCID: PMC11016826 DOI: 10.31661/jbpe.v0i0.2305-1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/13/2023] [Indexed: 04/19/2024]
Abstract
Background Breast cancer requires evaluating treatment plans using dosimetric and biological parameters. Considering radiation dose distribution and tissue response, healthcare professionals can optimize treatment plans for better outcomes. Objective This study aimed to evaluate the effects of the different Dose Calculation Algorithms (DCAs) and Biologically Model-Related Parameters (BMRPs) on the prediction of cardiopulmonary complications due to left breast radiotherapy. Material and Methods In this practical study, the treatment plans of 21 female patients were simulated in the Monaco Treatment Planning System (TPS) with a prescribed dose of 50 Gy in 25 fractions. Dose distribution was extracted using the three DCAs [Pencil Beam (PB), Collapsed Cone (CC), and Monte Carlo (MC)]. Cardiopulmonary complications were predicted by Normal Tissue Complication Probability (NTCP) calculations using different dosimetric and biological parameters. The Lyman-Kutcher-Burman (LKB) and Relative-Seriality (RS) models were used to calculate NTCP. The endpoint for NTCP calculation was pneumonitis, pericarditis, and late cardiac mortality. The ANOVA test was used for statistical analysis. Results In calculating Tumor Control Probability (TCP), a statistically significant difference was observed between the results of DCAs in the Poisson model. The PB algorithm estimated NTCP as less than others for all Pneumonia BMRPs. Conclusion The impact of DCAs and BMRPs differs in the estimation of TCP and NTCP. DCAs have a stronger influence on TCP calculation, providing more effective results. On the other hand, BMRPs are more effective in estimating NTCP. Consequently, parameters for radiobiological indices should be cautiously used s to ensure the appropriate consideration of both DCAs and BMRPs.
Collapse
Affiliation(s)
- Niloofar Kargar
- Department of Medical Physics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahad Zeinali
- Department of Medical Physics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mikaeil Molazadeh
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Pan L, Du B, Zhu Z, Meng Q, Zhong R, Wang S. A comparative study of volumetric modulated arc therapy plans based on the equivalent uniform dose optimization for left-sided breast cancer. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Kiseleva V, Gordon K, Vishnyakova P, Gantsova E, Elchaninov A, Fatkhudinov T. Particle Therapy: Clinical Applications and Biological Effects. Life (Basel) 2022; 12:2071. [PMID: 36556436 PMCID: PMC9785772 DOI: 10.3390/life12122071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Particle therapy is a developing area of radiotherapy, mostly involving the use of protons, neutrons and carbon ions for cancer treatment. The reduction of side effects on healthy tissues in the peritumoral area is an important advantage of particle therapy. In this review, we analyze state-of-the-art particle therapy, as compared to conventional photon therapy, to identify clinical benefits and specify the mechanisms of action on tumor cells. Systematization of published data on particle therapy confirms its successful application in a wide range of cancers and reveals a variety of biological effects which manifest at the molecular level and produce the particle therapy-specific molecular signatures. Given the rapid progress in the field, the use of particle therapy holds great promise for the near future.
Collapse
Affiliation(s)
- Viktoriia Kiseleva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Konstantin Gordon
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- A. Tsyb Medical Radiological Research Center, 249031 Obninsk, Russia
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Elena Gantsova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| |
Collapse
|
7
|
Validation and testing of a novel pencil-beam model derived from Monte Carlo simulations in carbon-ion treatment planning for different scenarios. Phys Med 2022; 99:1-9. [PMID: 35576855 DOI: 10.1016/j.ejmp.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The calculation ability of the newly-proposed accurate beam model, the double Gaussian-logistic (DG-L) model, was validated in both homogeneous and heterogeneous phantoms to provide helpful information for its future application in clinical carbon-ion treatment planning system (TPS). METHODS MatRad was used as the new algorithm test platform. Based on Monte Carlo (MC) method, the basic database in matRad was generated, then comparative dosimetric analyses between the single Gaussian (SG), double Gaussian (DG) and DG-L models against the MC recalculations were performed on the treatment plans of a cubic water phantom, a TG119 phantom and a liver patient scenario. Absolute dose differences, dose-volume histograms (DVHs) and global γ-index analyses derived from the treatment plans were evaluated. RESULTS Calculated with the DG-L model, the deviations of the target dose coverage (D95) for the cubic water phantom, the TG119 phantom and the liver patient case against the MC recalculations could be reduced from -2.5%, -4.6% and -6.4% to -0.3%, -2.0% and -4.5% respectively compared to the SG model, while the γ pass rates (3%/3mm) could be enhanced from 98.0%, 90.6% and 90.1% to 99.8%, 95.7% and 91.6%, respectively. The novel beam model also shows improved performance compared with the DG model, without substantially increasing the computation time. CONCLUSIONS The DG-L model could effectively improve the dose calculation accuracy and mitigate the delivered dose deficiency in target volumes compared to the SG and DG models. The lateral heterogeneities should be considered for its future implementation in a clinical TPS.
Collapse
|
8
|
Rana S, Rosenfeld AB. Impact of proton dose calculation algorithms on the interplay effect in PBS proton based SBRT lung plans. Biomed Phys Eng Express 2021; 7. [PMID: 34029212 DOI: 10.1088/2057-1976/abfea8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/06/2021] [Indexed: 01/02/2023]
Abstract
Purpose. The purpose of the current study was to investigate the impact of RayStation analytical pencil beam (APB) and Monte Carlo (MC) algorithms on the interplay effect in pencil beam scanning (PBS) proton-based stereotactic body radiation therapy (SBRT) lung plans.Methods. The currentin-silicoplanning study was designed for a total dose of 5000 cGy(RBE) with a fractional dose of 1000 cGy(RBE). First, three sets of nominal plans were generated for each patient: (a) APB optimization followed by APB dose calculation (PB-PB), (b) APB optimization followed by MC dose calculation (PB-MC), and (c) MC optimization followed by MC dose calculation (MC-MC). Second, for each patient, two sets of volumetric repainting plans (five repaintings) - PB-MCVR5and MC-MCVR5were generated based on PB-MC and MC-MC, respectively. Dosimetric differences between APB and MC algorithms were calculated on the nominal and interplay dose-volume-histograms (DVHs).Results. Interplay evaluation in non-volumetric repainting plans showed that APB algorithm overestimated the target coverage by up to 8.4% for D95%and 10.5% for D99%, whereas in volumetric repainting plans, APB algorithm overestimated by up to 5.3% for D95%and 7.0% for D99%. Interplay results for MC calculations showed a decrease in D95%and D99%by average differences of 3.5% and 4.7%, respectively, in MC-MC plans and by 1.8% and 3.0% in MC-MCVR5plans.Conclusion. In PBS proton-based SBRT lung plans, the combination of APB algorithm and interplay effect reduced the target coverage. This may result in inferior local control. The use of MC algorithm for both optimization and final dose calculations in conjunction with the volumetric repainting technique yielded superior target coverage.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical Physics, The Oklahoma Proton Center, Oklahoma City, OK, United States of America.,Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States of America.,Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States of America.,Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
9
|
Rana S, Rosenfeld AB. Investigating volumetric repainting to mitigate interplay effect on 4D robustly optimized lung cancer plans in pencil beam scanning proton therapy. J Appl Clin Med Phys 2021; 22:107-118. [PMID: 33599391 PMCID: PMC7984493 DOI: 10.1002/acm2.13183] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/19/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose The interplay effect between dynamic pencil proton beams and motion of the lung tumor presents a challenge in treating lung cancer patients in pencil beam scanning (PBS) proton therapy. The main purpose of the current study was to investigate the interplay effect on the volumetric repainting lung plans with beam delivery in alternating order (“down” and “up” directions), and explore the number of volumetric repaintings needed to achieve acceptable lung cancer PBS proton plan. Method The current retrospective study included ten lung cancer patients. The total dose prescription to the clinical target volume (CTV) was 70 Gy(RBE) with a fractional dose of 2 Gy(RBE). All treatment plans were robustly optimized on all ten phases in the 4DCT data set. The Monte Carlo algorithm was used for the 4D robust optimization, as well as for the final dose calculation. The interplay effect was evaluated for both the nominal (i.e., without repainting) as well as volumetric repainting plans. The interplay evaluation was carried out for each of the ten different phases as the starting phases. Several dosimetric metrics were included to evaluate the worst‐case scenario (WCS) and bandwidth based on the results obtained from treatment delivery starting in ten different breathing phases. Results The number of repaintings needed to meet the criteria 1 (CR1) of target coverage (D95% ≥ 98% and D99% ≥ 97%) ranged from 2 to 10. The number of repaintings needed to meet the CR1 of maximum dose (ΔD1% < 1.5%) ranged from 2 to 7. Similarly, the number of repaintings needed to meet CR1 of homogeneity index (ΔHI < 0.03) ranged from 3 to 10. For the target coverage region, the number of repaintings needed to meet CR1 of bandwidth (<100 cGy) ranged from 3 to 10, whereas for the high‐dose region, the number of repaintings needed to meet CR1 of bandwidth (<100 cGy) ranged from 1 to 7. Based on the overall plan evaluation criteria proposed in the current study, acceptable plans were achieved for nine patients, whereas one patient had acceptable plan with a minor deviation. Conclusion The number of repaintings required to mitigate the interplay effect in PBS lung cancer (tumor motion < 15 mm) was found to be highly patient dependent. For the volumetric repainting with an alternating order, a patient‐specific interplay evaluation strategy must be adopted. Determining the optimal number of repaintings based on the bandwidth and WCS approach could mitigate the interplay effect in PBS lung cancer treatment.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical PhysicsThe Oklahoma Proton CenterOklahoma CityOklahomaUSA
- Department of Radiation OncologyMiami Cancer InstituteBaptist Health South FloridaMiamiFLUSA
- Department of Radiation OncologyHerbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| | - Anatoly B. Rosenfeld
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| |
Collapse
|
10
|
Mizuno T, Tomita N, Takaoka T, Tomida M, Fukuma H, Tsuchiya T, Shibamoto Y. Dosimetric Comparison of Helical Tomotherapy, Volumetric-Modulated Arc Therapy, and Intensity-Modulated Proton Therapy for Angiosarcoma of the Scalp. Technol Cancer Res Treat 2021; 20:1533033820985866. [PMID: 33517860 PMCID: PMC7871283 DOI: 10.1177/1533033820985866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective: We compared radiotherapy plans among helical tomotherapy (HT),
volumetric-modulated arc therapy (VMAT), and intensity-modulated proton
therapy (IMPT) for angiosarcoma of the scalp (AS). Methods: We conducted a planning study for 19 patients with AS. The clinical target
volume (CTV) 1 and CTV2 were defined as the gross tumor volume with a
specific margin and total scalp, respectively. For HT and VMAT, the planning
target volume (PTV) 1 and PTV2 were defined as CTV1 and CTV2 with 0.5-cm
margins, respectively. For IMPT, robust optimization was used instead of a
CTV-PTV margin (i.e. CTV robust). The targets of the HT and VMAT plans were
the PTV, whereas the IMPT plans targeted the CTV robust. In total, 70 Gy and
56 Gy were prescribed as the D95% (i.e. dose to 95% volume) of PTV1 (or CTV1
robust) and PTV2 (or CTV2 robust), respectively, using the simultaneous
integrated boost (SIB) technique. Other constraint goals were also defined
for the target and organs at risk (OAR). Results: All dose constraint parameters for the target and OAR met the goals within
the acceptable ranges for the 3 techniques. The coverage of the targets
replaced by D95% and D98% were almost equivalent among the 3 techniques. The
homogeneity index of PTV1 or CTV1 robust was equivalent among the 3
techniques, whereas that of PTV2 or CTV2 robust was significantly higher in
the IMPT plans than in the other plans. IMPT reduced the Dmean of the brain
and hippocampus by 49% to 95%, and the Dmax of the spinal cord, brainstem,
and optic pathway by 70% to 92% compared with the other techniques. Conclusion: The 3 techniques with SIB methods provided sufficient coverage and
satisfactory homogeneity for the targets, but IMPT achieved the best OAR
sparing.
Collapse
Affiliation(s)
- Tomoki Mizuno
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Natsuo Tomita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Taiki Takaoka
- Narita Memorial Proton Center, Toyohashi, Aichi, Japan
| | | | - Hiroshi Fukuma
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takahiro Tsuchiya
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| |
Collapse
|
11
|
Rana S, Storey M, Manthala Padannayil N, Shamurailatpam DS, Bennouna J, George J, Chang J. Investigating the utilization of beam-specific apertures for the intensity-modulated proton therapy (IMPT) head and neck cancer plans. Med Dosim 2020; 46:e7-e11. [PMID: 33246881 DOI: 10.1016/j.meddos.2020.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/11/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
Intensity-modulated proton therapy (IMPT) planning for the head and neck (HN) cancer often requires the use of the range shifter, which can increase the lateral penumbrae of the pencil proton beam in the patient, thus leading to an increase in unnecessary dose to the organs at risks (OARs) in proximity to the target volumes. The primary goal of the current study was to investigate the dosimetric benefits of utilizing beam-specific apertures for the IMPT HN cancer plans. The current retrospective study included computed tomography datasets of 10 unilateral HN cancer patients. The clinical target volume (CTV) was divided into low-risk CTV1 and high-risk CTV2. Total dose prescriptions to the CTV1 and CTV2 were 54 Gy(RBE) and 70 Gy(RBE), respectively, with a fractional dose of 2 Gy(RBE). All treatment plans were robustly optimized (patient setup uncertainty = 3 mm; range uncertainty = 3.5%) on the CTVs. For each patient, 2 sets of plans were generated: (1) without beam-specific aperture (WOBSA), and (2) with beam-specific aperture (WBSA). Specifically, both the WOBSA and WBSA of the given patient used identical beam angles, air gap, optimization structures, optimization constraints, and optimization settings. Target coverage and homogeneity index were comparable in both the WOBSA and WBSA plans with no statistical significance (p > 0.05). On average, the mean dose in WBSA plans was reduced by 12.1%, 2.9%, 3.0%, 3.8%, and 5.2% for the larynx, oral cavity, parotids, superior pharyngeal constrictor muscle, and inferior pharyngeal constrictor muscle, respectively. The dosimetric results of the OARs were found to be statistically significant (p < 0.05). The use of the beam-specific apertures did not deteriorate the coverage and homogeneity in the target volume and allowed for a reduction in mean dose to the OARs with an average difference up to 12.1%.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical Physics, Oklahoma Proton Center, Oklahoma City, OK 73142, USA; Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Mark Storey
- Department of Radiation Oncology, Oklahoma Proton Center, Oklahoma City, OK 73142, USA
| | | | | | - Jaafar Bennouna
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Jerry George
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - John Chang
- Department of Radiation Oncology, Oklahoma Proton Center, Oklahoma City, OK 73142, USA
| |
Collapse
|
12
|
Rana S, Rosenfeld AB. Parametrization of in-air spot size as a function of energy and air gap for the ProteusPLUS pencil beam scanning proton therapy system. Radiol Phys Technol 2020; 13:392-397. [PMID: 33038003 DOI: 10.1007/s12194-020-00589-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to parametrize the in-air one sigma spot size for various energies and air gaps in pencil beam scanning (PBS) proton therapy. The current study included range shifters with a water equivalent thickness (WET) of 40 mm (RS40) and 75 mm (RS75). For RS40, the spot sizes were measured for energies ranging from 80 to 225 MeV in increments of 2.5 MeV, whereas the air gap was varied from 5 to 25 cm in increments of 2.5 cm. For RS75, the spot sizes were measured for energies ranging from 120 to 225 MeV in increments of 2.5 MeV, whereas the air gap was varied from 5 to 35 cm in increments of 2.5 cm. For both RS40 and RS75, all measurements (n = 1090) were acquired at the isocenter using a Lynx 2D scintillation detector. For RS40, the spot sizes increased from 3.1 mm to 10.4 mm, whereas the variation in spot sizes for RS75 ranged from 3.3 mm to 13.1 mm. For each range shifter, an analytical equation demonstrating the relationship of the spot size with the proton energy and air gap was obtained. The best parametrization results were obtained with the 3rd degree polynomial fits of the energy and air gap parameters. The average difference between the modeled and measured spot sizes was 0.0 ± 0.1 mm (range, - 0.24-0.21 mm) for RS40, and 0.0 ± 0.1 mm (range, - 0.23-0.15 mm) for RS75. In conclusion, the analytical model agrees within ± 0.25 mm of the measured spot sizes on a ProteusPLUS PBS proton system with a PBS dedicated nozzle.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA. .,Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA. .,Department of Medical Physics, The Oklahoma Proton Center, Oklahoma City, OK, USA.
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
13
|
Liu C, Zheng D, Bradley JA, Vega RBM, Li Z, Mendenhall NP, Liang X. Patient-specific quality assurance and plan dose errors on breast intensity-modulated proton therapy. Phys Med 2020; 77:84-91. [PMID: 32799050 DOI: 10.1016/j.ejmp.2020.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 08/05/2020] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To investigate, in proton therapy, whether the Gamma passing rate (GPR) is related to the patient dose error and whether MU scaling can improve dose accuracy. METHODS Among 20 consecutively treated breast patients selected for analysis, two IMPT plans were retrospectively generated: (1) the pencil-beam (PB) plan and (2) the Monte Carlo (MC) plan. Patient-specific QA was performed. A 3%/3-mm Gamma analysis was conducted to compare the TPS-calculated PB algorithm dose distribution with the measured 2D dose. Dose errors were compared between the plans that passed the Gamma testing and those that failed. The MU was then scaled to obtain a better GPR. MU-scaled PB plan dose errors were compared to the original PB plan. RESULTS Of the 20 PB plans, 8 were passed Gamma testing (G_pass_group) and 12 failed (G_fail_group). Surprisingly, the G_pass_group had a greater dose error than the G_fail_group. The median (range) of the PTV DVH RMSE and PTV ΔDmean were 1.36 (1.00-1.91) Gy vs 1.18 (1.02-1.80) Gy and 1.23 (0.92-1.71) Gy vs 1.10 (0.87-1.49) Gy for the G_pass_group and the G_fail_group, respectively. MU scaling reduced overall dose error. However, for PTV D99 and D95, MU scaling worsened some cases. CONCLUSION For breast IMPT, the PB plans that passed the Gamma testing did not show smaller dose errors compared to the plans that failed. For individual plans, the MU scaling technique leads to overall smaller dose errors. However, we do not suggest use of the MU scaling technique to replace the MC plans when the MC algorithm is available.
Collapse
Affiliation(s)
- Chunbo Liu
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA; School of Physical Sciences, University of Science and Technology of China, Hefei, China
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Raymond B Mailhot Vega
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Zuofeng Li
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Nancy P Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA.
| |
Collapse
|
14
|
Implementation of a dose calculation algorithm based on Monte Carlo simulations for treatment planning towards MRI guided ion beam therapy. Phys Med 2020; 74:155-165. [DOI: 10.1016/j.ejmp.2020.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 12/30/2022] Open
|
15
|
Rana S, Bennouna J. Impact of Air Gap on Intensity-Modulated Proton Therapy Breast Plans. J Med Imaging Radiat Sci 2019; 50:499-505. [DOI: 10.1016/j.jmir.2019.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/28/2019] [Accepted: 09/12/2019] [Indexed: 11/25/2022]
|