1
|
Liu Y, Chou B, Yalamanchili A, Lim SN, Dawson LA, Thomas TO. Local Therapies for Hepatocellular Carcinoma and Role of MRI-Guided Adaptive Radiation Therapy. J Clin Med 2023; 12:jcm12103517. [PMID: 37240623 DOI: 10.3390/jcm12103517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver tumor, with a continually rising incidence. The curative treatment for HCC is surgical resection or liver transplantation; however, only a small portion of patients are eligible due to local tumor burden or underlying liver dysfunction. Most HCC patients receive nonsurgical liver-directed therapies (LDTs), including thermal ablation, transarterial chemoembolization (TACE), transarterial radioembolization (TARE), and external beam radiation therapy (EBRT). Stereotactic ablative body radiation (SABR) is a specific type of EBRT that can precisely deliver a high dose of radiation to ablate tumor cells using a small number of treatments (or fractions, typically 5 or less). With onboard MRI imaging, MRI-guided SABR can improve therapeutic dose while minimizing normal tissue exposure. In the current review, we discuss different LDTs and compare them with EBRT, specifically SABR. The emerging MRI-guided adaptive radiation therapy has been reviewed, highlighting its advantages and potential role in HCC management.
Collapse
Affiliation(s)
- Yirong Liu
- Department of Radiation Oncology, Northwestern Medicine, Chicago, IL 60611, USA
| | - Brian Chou
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Amulya Yalamanchili
- Department of Radiation Oncology, Northwestern Medicine, Chicago, IL 60611, USA
| | - Sara N Lim
- Department of Radiation Oncology, Northwestern Medicine, Chicago, IL 60611, USA
| | - Laura A Dawson
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Tarita O Thomas
- Department of Radiation Oncology, Northwestern Medicine, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Wei Z, Peng X, He L, Wang J, Liu Z, Xiao J. Treatment plan comparison of volumetric-modulated arc therapy to intensity-modulated radiotherapy in lung stereotactic body radiotherapy using either 6- or 10-MV photon energies. J Appl Clin Med Phys 2022; 23:e13714. [PMID: 35808973 PMCID: PMC9359046 DOI: 10.1002/acm2.13714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/05/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
Purpose The aim of this study was to dosimetrically compare volumetric‐modulated arc therapy (VMAT) with intensity‐modulated radiotherapy (IMRT) techniques using either 6‐ or 10‐MV photon beam energies in lung stereotactic body radiation therapy (SBRT) plans. Methods Thirty patients with primary or metastatic lung tumors eligible for SBRT were randomly selected. VMAT and IMRT treatment plans using either 6‐ or 10‐MV photon energies were generated through automatic SBRT planning software in the RayStation treatment planning system. Results For planning target volume, there was no difference in D95% for all plans, whereas D2% and D50% were significantly increased by 5.22%–5.98% and 2.47%–2.59%, respectively, using VMAT6/10‐MV plans compared to IMRT6/10‐MV plans. When comparing the Dmax of organs at risk (OARs), VMAT6/10‐MV was 18.32%–47.95% lower than IMRT6/10‐MV for almost all OARs. VMAT6/10‐MV obviously decreased Dmean, V5Gy, V10Gy, and V20Gy of whole lung by 9.68%–20.92% than IMRT6/10‐MV. Similar results were found when comparing VMAT6‐MV with IMRT10‐MV or VMAT10‐MV with IMRT6‐MV. The differences in the D2%, heterogeneity index, and conformity index between 6‐ and 10‐MV plans are not statistically significant. Plans using 6‐MV performed 4.68%–8.91% lower levels of Dmax of spinal cord, esophagus, great vessels, and trachea and proximal bronchial tree than those using 10‐MV plans. Similarly, Dmean, V5Gy, V10Gy, and V20Gy of whole lung were also reduced by 2.79%–5.25% using 6‐MV. For dose fall‐off analysis, the D2cm and R50% of VMAT6/10‐MV were lower than those of IMRT6/10‐MV. Dose fall‐off curve based on 10 rings was steeper for VMAT plans than IMRT plans regardless of the energy used. Conclusions For lung SBRT plans, VMAT‐based plans significantly reduced OARs dose and steepened dose fall‐off curves compared to IMRT‐based plans. A 6‐MV energy level was a better choice than 10‐MV for lung SBRT. In addition, the dose differences between different techniques were more obvious than those between different energy levels.
Collapse
Affiliation(s)
- Zhigong Wei
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingjing Wang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianghong Xiao
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Chen J, Dai J, Nobah A, Bai S, Bi N, Lai Y, Li M, Tian Y, Wang X, Fu Q, Liang B, Zhang T, Xia W, Xu Y, Ren W, Yan X, Zhu J, Chen D, Yang J. A Special Report on 2019 International Planning Competition and a Comprehensive Analysis of Its Results. Front Oncol 2020; 10:571644. [PMID: 33344231 PMCID: PMC7746833 DOI: 10.3389/fonc.2020.571644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose The aim of this work is to introduce the 2019 International Planning Competition and to analyze its results. Methods and materials A locally advanced non-small cell lung cancer (LA-NSCLC) case using the simultaneous integrated boost approach was selected. The plan quality was evaluated by using a ranking system in accordance with practice guidelines. Planners used their clinical Treatment Planning System (TPS) to generate the best possible plan along with a survey, designed to obtain medical physics aspects information. We investigated the quality of the large population of plans designed by worldwide planners using different planning and delivery systems. The correlations of plan quality with relevant planner characteristics (work experience, department scale, and competition experience) and with technological parameters (TPS and modality) were examined. Results The number of the qualified plans was 287 with a wide range of scores (38.61–97.99). The scores showed statistically significant differences by the following factors: 1) department scale: the mean score (89.76 ± 8.36) for planners from the departments treating >2,000 patients annually was the highest of all; 2) competition experience: the mean score for the 107 planners with previous competition experience was 88.92 ± 9.59, statistically significantly from first-time participants (p = .001); 3) techniques: the mean scores for planners using VMAT (89.18 ± 6.43) and TOMO (90.62 ± 7.60) were higher than those using IMRT (82.28 ± 12.47), with statistical differences (p <.001). The plan scores were negligibly correlated with the planner’s years of work experience or the type of TPS used. Regression analysis demonstrated that plan score was associated with dosimetric objectives that were difficult to achieve, which is generally consistent with a clinical practice evaluation. However, 51.2% of the planners abandoned the difficult component of total lung receiving a dose of 5 Gy in their plan design to achieve the optimal plan. Conclusion The 2019 international planning competition was carried out successfully, and its results were analyzed. Plan quality was not correlated with work experiences or the TPS used, but it was correlated with department scale, modality, and competition experience. These findings differed from those reported in previous studies.
Collapse
Affiliation(s)
- Jiayun Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ahmad Nobah
- Radiation Physics Section, Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Sen Bai
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youqun Lai
- Department of Radiation Oncology, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
| | - Minghui Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Tian
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuetao Wang
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Fu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlong Xia
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenting Ren
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuena Yan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Zhu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deqi Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiming Yang
- Department of Radiotherapy and Chemotherapy, Ningbo First Hospital, Ningbo, China
| |
Collapse
|