1
|
Hadid-Beurrier L, Geryes BH, Jean-Pierre A, Gaudin PA, Feghali JA. Clinical benchmarking of a commercial software for skin dose estimation in cardiac, abdominal, and neurology interventional procedures. Med Phys 2024; 51:3687-3697. [PMID: 38277471 DOI: 10.1002/mp.16956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Radiation exposure from interventional radiology (IR) could lead to potential risk of skin injury in patients. Several dose monitoring software like radiation dose monitor (RDM) were developed to estimate the patient skin dose (PSD) distribution in IR. PURPOSE This study benchmarked the accuracy of RDM software in estimating PSD as compared to GafChromic film baseline in-vivo measurements on patients during cardiac, abdominal, and neurology IR procedures. METHODS The prospective study conducted in four IR departments included 81 IR procedures (25 cardiac, 31 abdominal, and 25 neurology procedures) on three angiographic systems. PSD and field geometry were measured by placing GafChromic film under the patient's back. Statistical analyses were performed to compare the software estimation and film measurement results in terms of PSD and geometric accuracy. RESULTS Median values of measured/calculated PSD were 1140/1005, 591/655.9, and 538/409.7 mGy for neurology, cardiac, and abdominal procedures, respectively. For all angiographic systems, the median (InterQuartile Range, IQR) difference between calculated and measured PSD was -10.2% (-21.8%-5.7%) for neurology, -4.5% (-19.5%-15.5%) for cardiac, and -21.9% (-38.7%--3.6%) for abdominal IR procedures. These differences were not significant for all procedures (p > 0.05). Discrepancies increased up to -82% in lower dose regions where the measurement uncertainties are higher. Regarding the geometric accuracy, RDM correctly reproduced the skin dose map and estimated PSD area dimensions closely matched those registered on films with a median (IQR) difference of 0 cm (-1-0.8 cm). CONCLUSIONS RDM is proved to be a useful solution for the estimation of PSD and skin dose distribution during abdominal, cardiac and neurology IR procedures despite a geometry phantom which is not specific to the latter type of IR procedures.
Collapse
Affiliation(s)
- Lama Hadid-Beurrier
- Medical Physics and Radiation Protection Department, APHP Lariboisière University Hospital, Paris, France
| | - Bouchra Habib Geryes
- Radiology Department, APHP Necker-Enfants Malades University Hospital, Paris, France
| | - Antonella Jean-Pierre
- Medical Physics and Radiation Protection Department, APHP Lariboisière University Hospital, Paris, France
| | - Paul-Adrien Gaudin
- URC Lariboisière-Saint Louis, Hôpital Fernand Widal, PARIS Cedex, France
| | | |
Collapse
|
2
|
Vano E, Fernandez-Soto JM, Ten JI, Sanchez Casanueva RM. Occupational and patient doses for interventional radiology integrated into a dose management system. Br J Radiol 2023; 96:20220607. [PMID: 36533561 PMCID: PMC9975364 DOI: 10.1259/bjr.20220607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES The International Commission on Radiological Protection recommends managing patient and occupational doses as an integrated approach, for the optimisation of interventional procedures. The conventional passive personal dosimeters only allow one to know the accumulated occupational doses during a certain period of time. This information is not enough to identify if there is a lack of occupational radiation protection during some procedures. This paper describes the use of a dose management system (DMS) allowing patient and occupational doses for individual procedures to be audited. METHODS The DMS manages patient and occupational doses measured by electronic personal dosimeters. One dosemeter located at the C-arm is used as a reference for scatter radiation. Data have been collected from five interventional rooms. Dosimetry data can be managed for the whole procedure and the different radiation events. Optimisation is done through auditing different sets of parameters for individual procedures: patient dose indicators, occupational dose values, the ratio between occupational doses, and the doses measured by the reference dosemeter at the C-arm, and the ratio between occupational and patient dose values. RESULTS The managed data correspond to the year 2021, with around 4500 procedures, and 8000 records on occupational exposures. Patient and staff dose data (for 11 cardiologists, 7 radiologists and 8 nurses) were available for 3043 procedures. The DMS allows alerts for patient dose indicators and occupational exposures to be set. CONCLUSIONS The main advantage of this integrated approach is the capacity to improve radiation safety for patients and workers together, auditing alerts for individual procedures. ADVANCES IN KNOWLEDGE The management of patient and occupational doses together (measured with electronic personal dosimeters) for individual interventional procedures, using dose management systems, allows alerting optimisation on high-dose values for patients and staff.
Collapse
Affiliation(s)
| | - José M Fernandez-Soto
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos and Medical Physics Service, Madrid, Spain
| | - José I Ten
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos and Medical Physics Service, Madrid, Spain
| | | |
Collapse
|
3
|
Ria F, D’Ercole L, Origgi D, Paruccini N, Pierotti L, Rampado O, Rossetti V, Strocchi S, Torresin A, Torresin A, Pierotti L, Belli G, Bregant P, Isoardi P, Mari A, Nitrosi A, Nocetti L, Paruccini N, Quattrocchi MG, Radice A, Rampado O, Scrittori N, Sottocornola C, Strocchi S, Sutto M, Zatelli G, Acchiappati D, Aoja RA, Brambilla M, Branchini M, Cannatà V, Costi T, Cutaia C, D.’Ercole L, Del Vecchio A, Delle Canne S, Di Pasquale M, Elisabetta S, Fabbri C, Faico MD, Fantinato D, Ghetti C, Giannelli M, Giordano C, Grisotto S, Guidi G, Lisciandro F, Manco L, Giorgio Marini P, Moresco P, Oberhofer N, Origgi D, Palleri F, Pasquali C, Pasquino M, Peruzzo A, Petrillo G, Pini S, Rembado D, Ria F, Riccardi L, Rosasco R, Serelli G, Soavi R, Stasi M, Taddeucci A, Tonini E, Trianni A, Turano P, Venturi G, Zefiro D, Zito F. Statement of the Italian Association of Medical Physics (AIFM) task group on radiation dose monitoring systems. Insights Imaging 2022; 13:23. [PMID: 35124735 PMCID: PMC8818083 DOI: 10.1186/s13244-022-01155-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/18/2021] [Indexed: 11/25/2022] Open
Abstract
The evaluation of radiation burden in vivo is crucial in modern radiology as stated also in the European Directive 2013/59/Euratom—Basic Safety Standard. Although radiation dose monitoring can impact the justification and optimization of radiological procedure, as well as effective patient communication, standardization of radiation monitoring software is far to be achieved. Toward this goal, the Italian Association of Medical Physics (AIFM) published a report describing the state of the art and standard guidelines in radiation dose monitoring system quality assurance. This article reports the AIFM statement about radiation dose monitoring systems (RDMSs) summarizing the different critical points of the systems related to Medical Physicist Expert (MPE) activities before, during, and after their clinical implementation. In particular, the article describes the general aspects of radiation dose data management, radiation dose monitoring systems, data integrity, and data responsibilities. Furthermore, the acceptance tests that need to be implemented and the most relevant dosimetric data for each radiological modalities are reported under the MPE responsibility.
Collapse
|
4
|
Fernández-Bosman D, von Barnekow A, Dabin J, Malchair F, Vanhavere F, Amor Duch M, Ginjaume M. Validation of organ dose calculations with PyMCGPU-IR in realistic interventional set-ups. Phys Med 2021; 93:29-37. [PMID: 34920380 DOI: 10.1016/j.ejmp.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Interventional radiology procedures are associated with high skin dose exposure. The 2013/59/EURATOM Directive establishes that the equipment used for interventional radiology must have a device or a feature informing the practitioner of relevant parameters for assessing patient dose at the end of the procedure. This work presents and validates PyMCGPU-IR, a patient dose monitoring tool for interventional cardiology and radiology procedures based on MC-GPU. MC-GPU is a freely available Monte Carlo (MC) code of photon transport in a voxelized geometry which uses the computational power of commodity Graphics Processing Unit cards (GPU) to accelerate calculations. METHODOLOGIES PyMCGPU-IR was validated against two different experimental set-ups. The first one consisted of skin dose measurements for different beam angulations on an adult Rando Alderson anthropomorphic phantom. The second consisted of organ dose measurements in three clinical procedures using the Rando Alderson phantom. RESULTS The results obtained for the skin dose measurements show differences below 6%. For the clinical procedures the differences are within 20% for most cases. CONCLUSIONS PyMCGPU-IR offers both, high performance and accuracy for dose assessment when compared with skin and organ dose measurements. It also allows the calculation of dose values at specific positions and organs, the dose distribution and the location of the maximum doses per organ. In addition, PyMCGPU-IR overcomes the time limitations of CPU-based MC codes.
Collapse
Affiliation(s)
| | - Ariel von Barnekow
- Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
| | - Jérémie Dabin
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | | | - Filip Vanhavere
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Maria Amor Duch
- Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
| | - Mercè Ginjaume
- Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Krajinović M, Vujisić M, Ciraj-Bjelac O. UNCERTAINTY ASSOCIATED WITH THE USE OF SOFTWARE SOLUTIONS UTILIZING DICOM RDSR FOR SKIN DOSE ASSESSMENT IN INTERVENTIONAL RADIOLOGY AND CARDIOLOGY. RADIATION PROTECTION DOSIMETRY 2021; 196:129-135. [PMID: 34580734 DOI: 10.1093/rpd/ncab146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/14/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE The purpose of this work is to provide a comprehensive analysis of uncertainties associated with the use of software solutions utilizing DICOM RDSRs for skin dose assessment in the interventional fluoroscopic environment. METHODS AND RESULTS Three different scenarios have been defined for determining the overall uncertainty, each with a specific assumption on the maximum deviations of factors affecting the calculated dose. Relative expanded uncertainty has been calculated using two approaches: the law of propagation of uncertainty and the propagation of distributions based on the Monte Carlo method. According to the propagation of uncertainty, it is estimated that the lowest possible relative expanded uncertainty of ~13% (at the 95% level of confidence, i.e. with the coverage factor of k = 2 assuming normal distribution) could only be achieved if all sources of uncertainties are carefully controlled, whereas maximum relative expanded uncertainty could reach up to 61% if none of the influencing parameters are controlled properly. When the influencing parameters are reasonably well-controlled, realistic relative expanded uncertainty amounts to 28%. Values for the relative expanded uncertainty obtained from the Monte Carlo propagation of distributions concur with the results obtained from the propagation of uncertainty to within 3% in all three considered scenarios, validating the assumption of normality. CONCLUSIONS The overall skin dose relative uncertainty has been found to range from 13 to 61%, emphasizing the importance of adequate analysis and control of all relevant uncertainty sources.
Collapse
Affiliation(s)
- Marko Krajinović
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
- "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miloš Vujisić
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
| | - Olivera Ciraj-Bjelac
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
- "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Papanastasiou E, Protopsaltis A, Finitsis S, Hatzidakis A, Prassopoulos P, Siountas A. Institutional Diagnostic Reference Levels and Peak Skin Doses in selected diagnostic and therapeutic interventional radiology procedures. Phys Med 2021; 89:63-71. [PMID: 34352677 DOI: 10.1016/j.ejmp.2021.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Institutional (local) Diagnostic Reference Levels for Cerebral Angiography (CA), Percutaneous Transhepatic Cholangiography (PTC), Transarterial Chemoembolization (TACE) and Percutaneous Transhepatic Biliary Drainage (PTBD) are reported in this study. MATERIALS AND METHODS Data for air kerma-area product (PKA), air kerma at the patient entrance reference point (Ka,r), fluoroscopy time (FT) and number of images (NI) as well as estimates of Peak Skin Dose (PSD) were collected for 142 patients. Therapeutic procedure complexity was also evaluated, in an attempt to incorporate it into the DRL analysis. RESULTS Local PKA DRL values were 70, 34, 189 and 54 Gy.cm2 for CA, PTC, TACE and PTBD respectively. The corresponding DRL values for Ka,r were 494, 194, 1186 and 400 mGy, for FT they were 9.2, 14.2, 27.5 and 22.9 min, for the NI they were 844, 32, 602 and 13 and for PSD they were 254, 256, 1598 and 540 mGy respectively. PKA for medium complexity PTBD procedures was 2.5 times higher than for simple procedures. For TACE, the corresponding ratio was 1.6. PSD was estimated to be roughly 50% of recorded Ka,r for procedures in the head/neck region and 10% higher than recorded Ka,r for procedures in the body region. In only 5 cases the 2 Gy dose alarm threshold for skin deterministic effects was exceeded. CONCLUSION Procedure complexity can differentiate DRLs in Interventional Radiology procedures. PSD could be deduced with reasonable accuracy from values of Ka,r that are reported in every angiography system.
Collapse
Affiliation(s)
- Emmanouil Papanastasiou
- Medical Physics Laboratory, School of Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece.
| | - Athanasios Protopsaltis
- Medical Physics Laboratory, School of Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Stefanos Finitsis
- Department of Radiology, School of Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Adam Hatzidakis
- Department of Radiology, School of Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Panos Prassopoulos
- Department of Radiology, School of Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Anastasios Siountas
- Medical Physics Laboratory, School of Medicine, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|