1
|
Ghemiș DM, Marcu LG. RTOG 0915-compliant patient specific QA for lung stereotactic body radiotherapy using the new PTW 1600SRS detector array. Phys Med 2024; 127:104822. [PMID: 39368297 DOI: 10.1016/j.ejmp.2024.104822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
PURPOSE An area of focus in radiotherapy is the treatment of oligometastatic lung cancer using highly conformal techniques such as SBRT, performed using VMAT that involves flattening filter free (FFF) beams. This study proposes a new calibration procedure for PTW Octavius 1600SRS detector array and was designed to also evaluate clinical and dosimetric aspects of a patient-specific quality assurance (PSQA) for lung SBRT patients. METHODS The cohort consists of 20 patients, treated for lung metastases using SBRT with 50 Gy dose in 5 fractions (10 Gy/fr). The proposed calibration method uses only one calibration factor determined at maximum dose rate of 6MV FFF photon beam. The dosimetric accuracy of achieving a high dose gradient was analyzed using the RTOG 0915 protocol and was confirmed by PSQA procedures using the PTW Octavius 1600SRS detector. RESULTS Conformity index, gradient index, maximum dose at 2 cm and V20 parameters were evaluated with clinical favorable results, with only two plans with lesions situated in the inferior lobe exceeding the deviation allowed for the gradient index. Gamma passing rates using the new calibration method were 98.93% and 99.38% for different gamma criteria of 2 mm/2% and 1 mm/3%, respectively. CONCLUSIONS The proposed method for calibration using one calibration factor at maximum dose rate for the involved photon beam shows clinically acceptable gamma passing rates. Employing the RTOG 0915 protocol for lung SBRT treatment plan evaluation brings important dosimetric information about treatment plan quality and dose gradient fall-off which can be correlated with the results achieved during the pretreatment verification procedures.
Collapse
Affiliation(s)
- Diana M Ghemiș
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; MedEuropa, Oradea, Romania.
| | - Loredana G Marcu
- Faculty of Informatics & Science, University of Oradea, Oradea 410087, Romania; UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| |
Collapse
|
2
|
Chinnaiya D, Mudhana G. Assessment of stereotactic high-resolution detectors for stereotactic body radiotherapy: comparative analysis between myQA® SRS and Gafchromic EBT-XD films. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2024; 63:203-214. [PMID: 38683360 DOI: 10.1007/s00411-024-01071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
The study aimed to evaluate dosimetry systems used for stereotactic body radiotherapy (SBRT), specifically 2D array dosimetry and film dosimetry systems, for exploring their characteristics and clinical suitability. For this, high-resolution myQA SRS detectors and Gafchromic EBT-XD films were employed. Film analysis included net optical density (OD) values depending on energy, dose rate, scanner orientation, scanning side, and post-exposure growth. For myQA SRS, signal values were evaluated in terms of dose rate (400-1400 MU/min) and angular dependence (0-180° at 30° intervals) along with couch angles of 0°, 45°, and 90°. Pre-treatment verification included 32 SBRT patients for whom myQA SRS results were compared with those obtained with Gafchromic EBT-XD films. Analysis revealed less than 1% deviation in net OD for energy and dose rate dependence. Scanner orientation caused 2.5% net OD variation, with minimal differences between film front and back scan orientations (variance < 1.0%). A rapid OD rise occurred within six hours post-exposure, followed by gradual increase. The myQA SRS detector showed - 3.7% dose rate dependence (400 MU/min), while the angular dependence at 90° was - 26.7%. A correction factor effectively reduced these differences to < 1%. For myQA SRS, gamma passing rates were-93.6% (2%/1 mm), while those for EBT-XD films were-92.8%. Improved rates were observed with 3%/1 mm: for myQA SRS-97.9%, and for EBT-XD film-98.16%. In contrast, for 2%/2 mm with 10% threshold, for myQA SRS-97.7% and for EBT-XD film-98.97% were obtained. It is concluded that both myQA SRS detectors and EBT-XD films are suitable for SBRT pre-treatment verification, ensuring accuracy and reliability. However, myQA SRS detectors are preferred over EBT-XD film due to the fact that they offer real-time measurements and user-friendly features.
Collapse
Affiliation(s)
- Dinesan Chinnaiya
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, 6000127, India
- Department of Radiation Oncology, Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - Gopinath Mudhana
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, 6000127, India.
| |
Collapse
|
3
|
Malatesta T, Scaggion A, Giglioli FR, Belmonte G, Casale M, Colleoni P, Falco MD, Giuliano A, Linsalata S, Marino C, Moretti E, Richetto V, Sardo A, Russo S, Mancosu P. Patient specific quality assurance in SBRT: a systematic review of measurement-based methods. Phys Med Biol 2023; 68:21TR01. [PMID: 37625437 DOI: 10.1088/1361-6560/acf43a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
This topical review focuses on Patient-Specific Quality Assurance (PSQA) approaches to stereotactic body radiation therapy (SBRT). SBRT requires stricter accuracy than standard radiation therapy due to the high dose per fraction and the limited number of fractions. The review considered various PSQA methods reported in 36 articles between 01/2010 and 07/2022 for SBRT treatment. In particular comparison among devices and devices designed for SBRT, sensitivity and resolution, verification methodology, gamma analysis were specifically considered. The review identified a list of essential data needed to reproduce the results in other clinics, highlighted the partial miss of data reported in scientific papers, and formulated recommendations for successful implementation of a PSQA protocol.
Collapse
Affiliation(s)
- Tiziana Malatesta
- Medical Physics Unit, Department of Radiotherapy and Medical Oncology and Radiology, Fatebenefratelli Isola Tiberina-Gemelli Isola Hospital, Rome, Italy
| | - Alessandro Scaggion
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | | | - Gina Belmonte
- Medical Physics Department, San Luca Hospital, Lucca, Italy
| | - Michelina Casale
- Medical Physics Unit, Azienda Ospedaliera 'Santa Maria', Terni, Italy
| | - Paolo Colleoni
- UOC Medical Physics Unit-ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Daniela Falco
- Department of Radiation Oncology, 'SS. Annunziata' Hospital, 'G. D'Annunzio' University, Chieti, Italy
| | - Alessia Giuliano
- Medical Physics Unit, Pisa University Hospital 'Azienda Ospedaliero-Universitaria Pisana', Pisa, Italy
| | - Stefania Linsalata
- Medical Physics Unit, Pisa University Hospital 'Azienda Ospedaliero-Universitaria Pisana', Pisa, Italy
| | - Carmelo Marino
- Medical Physics and Radioprotection Unit, Humanitas Istituto Clinico Catanese, Misterbianco (CT), Italy
| | - Eugenia Moretti
- Division of Medical Physics, Department of Oncology, ASUFC Udine, Italy
| | - Veronica Richetto
- Medical Physics Unit, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Anna Sardo
- UOSD Medical Physics, ASLCN2, Verduno, Italy
| | - Serenella Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - Pietro Mancosu
- Medical Physics Unit of Radiotherapy Department, IRCCS Humanitas Research Hospital, Rozzano - Milano, Italy
| |
Collapse
|
4
|
Sheen H, Shin HB, Kim H, Kim C, Kim J, Kim JS, Hong CS. Application of error classification model using indices based on dose distribution for characteristics evaluation of multileaf collimator position errors. Sci Rep 2023; 13:11027. [PMID: 37419940 PMCID: PMC10328946 DOI: 10.1038/s41598-023-35570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/20/2023] [Indexed: 07/09/2023] Open
Abstract
This study aims to evaluate the specific characteristics of various multileaf collimator (MLC) position errors that are correlated with the indices using dose distribution. The dose distribution was investigated using the gamma, structural similarity, and dosiomics indices. Cases from the American Association of Physicists in Medicine Task Group 119 were planned, and systematic and random MLC position errors were simulated. The indices were obtained from distribution maps and statistically significant indices were selected. The final model was determined when all values of the area under the curve, accuracy, precision, sensitivity, and specificity were higher than 0.8 (p < 0.05). The dose-volume histogram (DVH) relative percentage difference between the error-free and error datasets was examined to investigate clinical relations. Seven multivariate predictive models were finalized. The common significant dosiomics indices (GLCM Energy and GLRLM_LRHGE) can characterize the MLC position error. In addition, the finalized logistic regression model for MLC position error prediction showed excellent performance with AUC > 0.9. Furthermore, the results of the DVH were related to dosiomics analysis in that it reflects the characteristics of the MLC position error. It was also shown that dosiomics analysis could provide important information on localized dose-distribution differences in addition to DVH information.
Collapse
Affiliation(s)
- Heesoon Sheen
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Han-Back Shin
- Department of Radiation Oncology, Gachon University Gil Medical Center, Incheon, South Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Hojae Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Seoul, South Korea
| | - Changhwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihun Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Chae-Seon Hong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
5
|
Kim C, Kim J, Lee YK, Shin HB, Han MC, Kim H, Kim JS. Evaluating Mobius3D Dose Calculation Accuracy for Small-Field Flattening- Filter-Free Photon Beams. Technol Cancer Res Treat 2022; 21:15330338221141542. [PMID: 36567632 PMCID: PMC9813500 DOI: 10.1177/15330338221141542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose: We aimed to investigate the dose calculation accuracy of Mobius3D for small-field flattening-filter-free x-rays, mainly utilized for stereotactic body radiation therapy (SBRT). The accuracy of beam modeling and multileaf collimator (MLC) modeling in Mobius3D, significantly affecting the dose calculation is investigated. Methods: The commissioning procedures of Mobius3D were performed for unflattened 6 MV and 10 MV x-ray beams of the linear accelerator, including beam model adjustment and dosimetric leaf gap (DLG) optimization. An experimental study with artificial plans was conducted to evaluate the accuracy of small-field modeling. The dose calculation accuracy of Mobius3D was also evaluated for retrospective SBRT plans with multiple targets. Results: Both studies evaluated the dose calculation accuracy through comparisons with the measured data. Relatively large differences were observed for off-axis distances over 5 cm and for small fields less than 1 cm field size. For the study with artificial plans, the maximum absolute error of 9.96% for unflattened 6 MV and 9.07% for unflattened 10 MV was observed when the field size was 1 cm. For the study with patient plans, the mean gamma passing rate with 3%/3 mm gamma criterion was 63.6% for unflattened 6 MV and 82.6% for unflattened 10 MV. The maximum of the average dose difference was -19.9% for unflattened 6MV and -10.1% for unflattened 10MV. Conclusions: The dose calculation accuracy uncertainties of Mobius3D for small-field flattening-filter-free photon beams were observed. The study results indicated that the beam and MLC modeling of Mobius3D must be improved for use in SBRT pretreatment QA in clinical practice.
Collapse
Affiliation(s)
- Changhwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of
Medicine, Seoul, South Korea
| | - Jihun Kim
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of
Medicine, Seoul, South Korea,Jihun Kim, Department of Radiation
Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211
Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea.
Jin Sung Kim, Department of Radiation
Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1
Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| | - Young Kyu Lee
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College
of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Han-Back Shin
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of
Medicine, Seoul, South Korea
| | - Min Cheol Han
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of
Medicine, Seoul, South Korea
| | - Hojin Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of
Medicine, Seoul, South Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of
Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Katayama H, Takahashi Y, Kobata T, Kawasaki H, Kitaoka M, Oishi A, Shibata T. Evaluating the effect of high-density measurement mode on patient-specific quality assurance for head and neck cancer with ArcCHECK. Phys Eng Sci Med 2022; 45:1153-1161. [PMID: 36318385 DOI: 10.1007/s13246-022-01180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
The high-density measurement (HDm) mode of the ArcCHECK device can achieve a twofold resolution enhancement compared to the standard measurement (Sm) mode. The aim of this study was to evaluate the effect of HDm on the gamma passing rate (GPR) for the patient-specific quality assurance (PSQA) in head and neck cancer. We retrospectively evaluated 30 patients who underwent volumetric modulated arc therapy (VMAT) for head and neck cancer. Absolute gamma analysis was performed on Sm and HDm data. We also investigated correlations between the modulation complexity score for VMAT (MCSv) and differences in the GPR between the two measurement modes. The global GPR of Sm and HDm was 81.0% ± 8.4% and 82.6% ± 7.6% for the 2%/2 mm criterion, 94.0% ± 4.1% and 94.9% ± 3.6% for the 3%/2 mm criterion, and 96.6% ± 2.4% and 97.0% ± 2.4% for the 3%/3 mm criterion, respectively. HDm slightly improved GPR (p < 0.01) for the 2%/2 mm criterion. Differences in GPR between Sm and HDm for the 2%/2 mm, 3%/2 mm, and 3%/3 mm criteria were 1.6% ± 3.0%, 0.8% ± 2.0%, and 0.4% ± 1.2%, respectively. No correlation was identified between the MCSv and the difference in GPR between Sm and HDm. Despite an improvement in GPR with HDm, the difference in GPR between Sm and HDm was approximately 2% even when the tighter criteria were used. Moreover, the change in the GPR between Sm and HDm did not depend on plan complexity. Thus, the effect of HDm on GPR is limited for the PSQA in VMAT for head and neck cancer.
Collapse
Affiliation(s)
- Hiroki Katayama
- Department of Clinical Radiology, Kagawa University Hospital, 1750-1 Ikenobe, Miki- cho, Kita-gun, 761-0793, Kagawa, Japan.
| | - Yosuke Takahashi
- Department of Clinical Radiology, Kagawa University Hospital, 1750-1 Ikenobe, Miki- cho, Kita-gun, 761-0793, Kagawa, Japan
| | - Takuya Kobata
- Department of Clinical Radiology, Kagawa University Hospital, 1750-1 Ikenobe, Miki- cho, Kita-gun, 761-0793, Kagawa, Japan
| | - Hiroki Kawasaki
- Department of Clinical Radiology, Kagawa University Hospital, 1750-1 Ikenobe, Miki- cho, Kita-gun, 761-0793, Kagawa, Japan
| | - Motonori Kitaoka
- Department of Clinical Radiology, Kagawa University Hospital, 1750-1 Ikenobe, Miki- cho, Kita-gun, 761-0793, Kagawa, Japan
| | - Akihiro Oishi
- Department of Clinical Radiology, Kagawa University Hospital, 1750-1 Ikenobe, Miki- cho, Kita-gun, 761-0793, Kagawa, Japan
| | - Toru Shibata
- Department of Radiation Oncology, Kagawa University Hospital, Kagawa, Japan
| |
Collapse
|
7
|
Kim C, Han MC, Lee YK, Shin HB, Kim H, Kim JS. Comprehensive clinical evaluation of TomoEQA for patient-specific pre-treatment quality assurance in helical tomotherapy. Radiat Oncol 2022; 17:177. [DOI: 10.1186/s13014-022-02151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Based on a previous study on the feasibility of TomoEQA, an exit detector-based patient-specific pre-treatment quality assurance (QA) method for helical tomotherapy, an in-depth clinical evaluation was conducted.
Methods
Data of one hundred patients were analyzed to evaluate the clinical usefulness of TomoEQA for patient-specific pre-treatment QA in comparison with the conventional phantom-based method. Additional investigations were also performed under unusual measurement conditions to validate the off-axis region. In addition to the clinical evaluation of TomoEQA, a statistical analysis was conducted to determine the plan parameters that affect the pass/failure results of pre-treatment QA.
Results
The average and standard deviations of the gamma passing rate and point dose error for TomoEQA were comparable to those of the conventional QA method. For TomoEQA, the average values of the gamma passing rate and point dose error were 96.32% (standard deviation (1 sigma) = 3.94; 95% confidence interval (CI), 95.55 to 97.09) and − 1.12% (standard deviation (1 sigma) = 1.04; CI, − 1.32 to − 0.92), respectively. For the conventional QA method, the average values of the gamma passing rate and point dose error were 95.95% (standard deviation (1 sigma) = 4.35; 95% confidence interval (CI), 95.10 to 96.80) and − 1.20% (standard deviation (1 sigma) = 1.61; CI, − 1.52 to − 0.88), respectively. Further experiments on the off-axis region demonstrated that TomoEQA can provide accurate results for 3D dose analysis, which is inherently difficult in the conventional QA method. Through a statistical analysis based on the results of TomoEQA, it was validated that the total fraction (Total Fx), monitor units, beam-on-time, leaf-of-time below 100 ms, and planning target volume diameter were statistically significant for the pass/failure of the pre-treatment QA results.
Conclusions
TomoEQA is a clinically beneficial alternative to the conventional phantom-based QA method.
Collapse
|
8
|
Gray A, Bawazeer O, Arumugam S, Vial P, Descallar J, Thwaites D, Holloway L. Evaluation of the ability of three commercially available dosimeters to detect systematic delivery errors in step-and-shoot IMRT plans. Rep Pract Oncol Radiother 2021; 26:793-803. [PMID: 34760314 DOI: 10.5603/rpor.a2021.0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/03/2021] [Indexed: 11/25/2022] Open
Abstract
Background There is limited data on error detectability for step-and-shoot intensity modulated radiotherapy (sIMRT) plans, despite significant work on dynamic methods. However, sIMRT treatments have an ongoing role in clinical practice. This study aimed to evaluate variations in the sensitivity of three patient-specific quality assurance (QA) devices to systematic delivery errors in sIMRT plans. Materials and methods Four clinical sIMRT plans (prostate and head and neck) were edited to introduce errors in: Multi-Leaf Collimator (MLC) position (increasing field size, leaf pairs offset (1-3 mm) in opposite directions; and field shift, all leaves offset (1-3 mm) in one direction); collimator rotation (1-3 degrees) and gantry rotation (0.5-2 degrees). The total dose for each plan was measured using an ArcCHECK diode array. Each field, excluding those with gantry offsets, was also measured using an Electronic Portal Imager and a MatriXX Evolution 2D ionisation chamber array. 132 plans (858 fields) were delivered, producing 572 measured dose distributions. Measured doses were compared to calculated doses for the no-error plan using Gamma analysis with 3%/3 mm, 3%/2 mm, and 2%/2 mm criteria (1716 analyses). Results Generally, pass rates decreased with increasing errors and/or stricter gamma criteria. Pass rate variations with detector and plan type were also observed. For a 3%/3 mm gamma criteria, none of the devices could reliably detect 1 mm MLC position errors or 1 degree collimator rotation errors. Conclusions This work has highlighted the need to adapt QA based on treatment plan type and the need for detector specific assessment criteria to detect clinically significant errors.
Collapse
Affiliation(s)
- Alison Gray
- Liverpool and Macarthur Cancer Therapy Centres, South Western Sydney Local Health District, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia.,South Western Sydney Clinical School, School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Omemh Bawazeer
- Physics Department, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Sankar Arumugam
- Liverpool and Macarthur Cancer Therapy Centres, South Western Sydney Local Health District, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia.,South Western Sydney Clinical School, School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Philip Vial
- Liverpool and Macarthur Cancer Therapy Centres, South Western Sydney Local Health District, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia.,South Western Sydney Clinical School, School of Medicine, University of New South Wales, Sydney, NSW, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Joseph Descallar
- Ingham Institute for Applied Medical Research, Sydney, NSW, Australia.,South Western Sydney Clinical School, School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Lois Holloway
- Liverpool and Macarthur Cancer Therapy Centres, South Western Sydney Local Health District, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia.,South Western Sydney Clinical School, School of Medicine, University of New South Wales, Sydney, NSW, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|