1
|
Li F, Xu Y, Lemus OD, Wang TJC, Sisti MB, Wuu CS. Synthetic CT for gamma knife radiosurgery dose calculation: A feasibility study. Phys Med 2024; 125:104504. [PMID: 39197262 DOI: 10.1016/j.ejmp.2024.104504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/24/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
PURPOSE To determine if MRI-based synthetic CTs (sCT), generated with no predefined pulse sequence, can be used for inhomogeneity correction in routine gamma knife radiosurgery (GKRS) treatment planning dose calculation. METHODS Two sets of sCTs were generated from T1post and T2 images using cycleGAN. Twenty-eight patients (18 training, 10 validation) were retrospectively selected. The image quality of the generated sCTs was compared with the original CT (oCT) regarding the HU value preservation using histogram comparison, RMSE and MAE, and structural integrity. Dosimetric comparisons were also made among GKRS plans from 3 calculation approaches: TMR10 (oCT), and convolution (oCT and sCT), at four locations: original disease site, bone/tissue interface, air/tissue interface, and mid-brain. RESULTS The study showed that sCTs and oCTs' HU were similar, with T2-sCT performing better. TMR10 significantly underdosed the target by a mean of 5.4% compared to the convolution algorithm. There was no significant difference in convolution algorithm shot time between the oCT and sCT generated with T2. The highest and lowest dosimetric differences between the two CTs were observed in the bone and air interface, respectively. Dosimetric differences of 3.3% were observed in sCT predicted from MRI with stereotactic frames, which was not included in the training sets. CONCLUSIONS MRI-based sCT can be utilized for GKRS convolution dose calculation without the unnecessary radiation dose, and sCT without metal artifacts could be generated in framed cases. Larger datasets inclusive of all pulse sequences can improve the training set. Further investigation and validation studies are needed before clinical implementation.
Collapse
Affiliation(s)
- Fiona Li
- Department of Radiation Oncology, Columbia University, New York, NY, USA.
| | - Yuanguang Xu
- Department of Radiation Oncology, Columbia University, New York, NY, USA
| | - Olga D Lemus
- Department of Radiation Oncology, Columbia University, New York, NY, USA
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University, New York, NY, USA
| | - Michael B Sisti
- Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Cheng-Shie Wuu
- Department of Radiation Oncology, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Villegas F, Dal Bello R, Alvarez-Andres E, Dhont J, Janssen T, Milan L, Robert C, Salagean GAM, Tejedor N, Trnková P, Fusella M, Placidi L, Cusumano D. Challenges and opportunities in the development and clinical implementation of artificial intelligence based synthetic computed tomography for magnetic resonance only radiotherapy. Radiother Oncol 2024; 198:110387. [PMID: 38885905 DOI: 10.1016/j.radonc.2024.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Synthetic computed tomography (sCT) generated from magnetic resonance imaging (MRI) can serve as a substitute for planning CT in radiation therapy (RT), thereby removing registration uncertainties associated with multi-modality imaging pairing, reducing costs and patient radiation exposure. CE/FDA-approved sCT solutions are nowadays available for pelvis, brain, and head and neck, while more complex deep learning (DL) algorithms are under investigation for other anatomic sites. The main challenge in achieving a widespread clinical implementation of sCT lies in the absence of consensus on sCT commissioning and quality assurance (QA), resulting in variation of sCT approaches across different hospitals. To address this issue, a group of experts gathered at the ESTRO Physics Workshop 2022 to discuss the integration of sCT solutions into clinics and report the process and its outcomes. This position paper focuses on aspects of sCT development and commissioning, outlining key elements crucial for the safe implementation of an MRI-only RT workflow.
Collapse
Affiliation(s)
- Fernanda Villegas
- Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden; Radiotherapy Physics and Engineering, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Emilie Alvarez-Andres
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Jennifer Dhont
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Institut Jules Bordet, Department of Medical Physics, Brussels, Belgium; Université Libre De Bruxelles (ULB), Radiophysics and MRI Physics Laboratory, Brussels, Belgium
| | - Tomas Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa Milan
- Medical Physics Unit, Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Charlotte Robert
- UMR 1030 Molecular Radiotherapy and Therapeutic Innovations, ImmunoRadAI, Paris-Saclay University, Institut Gustave Roussy, Inserm, Villejuif, France; Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Ghizela-Ana-Maria Salagean
- Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania; Department of Radiation Oncology, TopMed Medical Centre, Targu Mures, Romania
| | - Natalia Tejedor
- Department of Medical Physics and Radiation Protection, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Petra Trnková
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Marco Fusella
- Department of Radiation Oncology, Abano Terme Hospital, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy.
| | - Davide Cusumano
- Mater Olbia Hospital, Strada Statale Orientale Sarda 125, Olbia, Sassari, Italy
| |
Collapse
|
3
|
Jiao S, Zhao X, Zhou P, Geng M. Technical note: MR image-based synthesis CT for CyberKnife robotic stereotactic radiosurgery. Biomed Phys Eng Express 2024; 10:057002. [PMID: 39094608 DOI: 10.1088/2057-1976/ad6a62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/02/2024] [Indexed: 08/04/2024]
Abstract
The purpose of this study is to investigate whether deep learning-based sCT images enable accurate dose calculation in CK robotic stereotactic radiosurgery. A U-net convolutional neural network was trained using 2446 MR-CT pairs and used it to translate 551 MR images to sCT images for testing. The sCT of CK patient was encapsulated into a quality assurance (QA) validation phantom for dose verification. The CT value difference between CT and sCT was evaluated using mean absolute error (MAE) and the statistical significance of dose differences between CT and sCT was tested using the Wilcoxon signed rank test. For all CK patients, the MAE value of the whole brain region did not exceed 25 HU. The percentage dose difference between CT and sCT was less than ±0.4% on GTV (D2(Gy), -0.29%, D95(Gy), -0.09%), PTV (D2(Gy), -0.25%, D95(Gy), -0.10%), and brainstem (max dose(Gy), 0.31%). The percentage dose difference between CT and sCT for most regions of interest (ROIs) was no more than ±0.04%. This study extended MR-based sCT prediction to CK robotic stereotactic radiosurgery, expanding the application scenarios of MR-only radiation therapy. The results demonstrated the remarkable accuracy of dose calculation on sCT for patients treated with CK robotic stereotactic radiosurgery.
Collapse
Affiliation(s)
- Shengxiu Jiao
- Department of Nuclear Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Xiaoqian Zhao
- Department of Nuclear Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Peng Zhou
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing People's Republic of China
| | - Mingying Geng
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing People's Republic of China
| |
Collapse
|
4
|
Sherwani MK, Gopalakrishnan S. A systematic literature review: deep learning techniques for synthetic medical image generation and their applications in radiotherapy. FRONTIERS IN RADIOLOGY 2024; 4:1385742. [PMID: 38601888 PMCID: PMC11004271 DOI: 10.3389/fradi.2024.1385742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
The aim of this systematic review is to determine whether Deep Learning (DL) algorithms can provide a clinically feasible alternative to classic algorithms for synthetic Computer Tomography (sCT). The following categories are presented in this study: ∙ MR-based treatment planning and synthetic CT generation techniques. ∙ Generation of synthetic CT images based on Cone Beam CT images. ∙ Low-dose CT to High-dose CT generation. ∙ Attenuation correction for PET images. To perform appropriate database searches, we reviewed journal articles published between January 2018 and June 2023. Current methodology, study strategies, and results with relevant clinical applications were analyzed as we outlined the state-of-the-art of deep learning based approaches to inter-modality and intra-modality image synthesis. This was accomplished by contrasting the provided methodologies with traditional research approaches. The key contributions of each category were highlighted, specific challenges were identified, and accomplishments were summarized. As a final step, the statistics of all the cited works from various aspects were analyzed, which revealed that DL-based sCTs have achieved considerable popularity, while also showing the potential of this technology. In order to assess the clinical readiness of the presented methods, we examined the current status of DL-based sCT generation.
Collapse
Affiliation(s)
- Moiz Khan Sherwani
- Section for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
5
|
Prunaretty J, Güngör G, Gevaert T, Azria D, Valdenaire S, Balermpas P, Boldrini L, Chuong MD, De Ridder M, Hardy L, Kandiban S, Maingon P, Mittauer KE, Ozyar E, Roque T, Colombo L, Paragios N, Pennell R, Placidi L, Shreshtha K, Speiser MP, Tanadini-Lang S, Valentini V, Fenoglietto P. A multi-centric evaluation of self-learning GAN based pseudo-CT generation software for low field pelvic magnetic resonance imaging. Front Oncol 2023; 13:1245054. [PMID: 38023165 PMCID: PMC10667706 DOI: 10.3389/fonc.2023.1245054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose/objectives An artificial intelligence-based pseudo-CT from low-field MR images is proposed and clinically evaluated to unlock the full potential of MRI-guided adaptive radiotherapy for pelvic cancer care. Materials and method In collaboration with TheraPanacea (TheraPanacea, Paris, France) a pseudo-CT AI-model was generated using end-to-end ensembled self-supervised GANs endowed with cycle consistency using data from 350 pairs of weakly aligned data of pelvis planning CTs and TrueFisp-(0.35T)MRIs. The image accuracy of the generated pCT were evaluated using a retrospective cohort involving 20 test cases coming from eight different institutions (US: 2, EU: 5, AS: 1) and different CT vendors. Reconstruction performance was assessed using the organs at risk used for treatment. Concerning the dosimetric evaluation, twenty-nine prostate cancer patients treated on the low field MR-Linac (ViewRay) at Montpellier Cancer Institute were selected. Planning CTs were non-rigidly registered to the MRIs for each patient. Treatment plans were optimized on the planning CT with a clinical TPS fulfilling all clinical criteria and recalculated on the warped CT (wCT) and the pCT. Three different algorithms were used: AAA, AcurosXB and MonteCarlo. Dose distributions were compared using the global gamma passing rates and dose metrics. Results The observed average scaled (between maximum and minimum HU values of the CT) difference between the pCT and the planning CT was 33.20 with significant discrepancies across organs. Femoral heads were the most reliably reconstructed (4.51 and 4.77) while anal canal and rectum were the less precise ones (63.08 and 53.13). Mean gamma passing rates for 1%1mm, 2%/2mm, and 3%/3mm tolerance criteria and 10% threshold were greater than 96%, 99% and 99%, respectively, regardless the algorithm used. Dose metrics analysis showed a good agreement between the pCT and the wCT. The mean relative difference were within 1% for the target volumes (CTV and PTV) and 2% for the OARs. Conclusion This study demonstrated the feasibility of generating clinically acceptable an artificial intelligence-based pseudo CT for low field MR in pelvis with consistent image accuracy and dosimetric results.
Collapse
Affiliation(s)
- Jessica Prunaretty
- Institut du Cancer de Montpellier, Department of Radiation Oncology, Montpellier, France
| | - Gorkem Güngör
- Department of Radiation Oncology, Maslak Hospital, Acibadem Mehmet Ali Aydınlar (MAA) University, Istanbul, Türkiye
| | - Thierry Gevaert
- Radiotherapy Department, Universitair Ziekenhuis (UZ) Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Azria
- Institut du Cancer de Montpellier, Department of Radiation Oncology, Montpellier, France
| | - Simon Valdenaire
- Institut du Cancer de Montpellier, Department of Radiation Oncology, Montpellier, France
| | - Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Luca Boldrini
- Radiation Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michael David Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, United States
| | - Mark De Ridder
- Radiotherapy Department, Universitair Ziekenhuis (UZ) Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Philippe Maingon
- Assistance publique – Hôpitaux de Paris (AP-HP) Sorbonne Universite, Charles-Foix Pitié-Salpêtrière, Paris, France
| | - Kathryn Elizabeth Mittauer
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Enis Ozyar
- Department of Radiation Oncology, Maslak Hospital, Acibadem Mehmet Ali Aydınlar (MAA) University, Istanbul, Türkiye
| | | | | | | | - Ryan Pennell
- Radiation Oncology, NewYork-Presbyterian/Weill Cornell Hospital, New York, NY, United States
| | - Lorenzo Placidi
- Radiation Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - M. P. Speiser
- Radiation Oncology Weill Cornell Medicine, New York, NY, United States
| | | | - Vincenzo Valentini
- Radiation Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Pascal Fenoglietto
- Institut du Cancer de Montpellier, Department of Radiation Oncology, Montpellier, France
| |
Collapse
|
6
|
McNaughton J, Fernandez J, Holdsworth S, Chong B, Shim V, Wang A. Machine Learning for Medical Image Translation: A Systematic Review. Bioengineering (Basel) 2023; 10:1078. [PMID: 37760180 PMCID: PMC10525905 DOI: 10.3390/bioengineering10091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND CT scans are often the first and only form of brain imaging that is performed to inform treatment plans for neurological patients due to its time- and cost-effective nature. However, MR images give a more detailed picture of tissue structure and characteristics and are more likely to pick up abnormalities and lesions. The purpose of this paper is to review studies which use deep learning methods to generate synthetic medical images of modalities such as MRI and CT. METHODS A literature search was performed in March 2023, and relevant articles were selected and analyzed. The year of publication, dataset size, input modality, synthesized modality, deep learning architecture, motivations, and evaluation methods were analyzed. RESULTS A total of 103 studies were included in this review, all of which were published since 2017. Of these, 74% of studies investigated MRI to CT synthesis, and the remaining studies investigated CT to MRI, Cross MRI, PET to CT, and MRI to PET. Additionally, 58% of studies were motivated by synthesizing CT scans from MRI to perform MRI-only radiation therapy. Other motivations included synthesizing scans to aid diagnosis and completing datasets by synthesizing missing scans. CONCLUSIONS Considerably more research has been carried out on MRI to CT synthesis, despite CT to MRI synthesis yielding specific benefits. A limitation on medical image synthesis is that medical datasets, especially paired datasets of different modalities, are lacking in size and availability; it is therefore recommended that a global consortium be developed to obtain and make available more datasets for use. Finally, it is recommended that work be carried out to establish all uses of the synthesis of medical scans in clinical practice and discover which evaluation methods are suitable for assessing the synthesized images for these needs.
Collapse
Affiliation(s)
- Jake McNaughton
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
| | - Justin Fernandez
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Department of Engineering Science and Biomedical Engineering, University of Auckland, 3/70 Symonds Street, Auckland 1010, New Zealand
| | - Samantha Holdsworth
- Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Mātai Medical Research Institute, 400 Childers Road, Tairāwhiti Gisborne 4010, New Zealand
| | - Benjamin Chong
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Mātai Medical Research Institute, 400 Childers Road, Tairāwhiti Gisborne 4010, New Zealand
| | - Alan Wang
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| |
Collapse
|
7
|
Li Z, Zhang Q, Li H, Kong L, Wang H, Liang B, Chen M, Qin X, Yin Y, Li Z. Using RegGAN to generate synthetic CT images from CBCT images acquired with different linear accelerators. BMC Cancer 2023; 23:828. [PMID: 37670252 PMCID: PMC10478281 DOI: 10.1186/s12885-023-11274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND The goal was to investigate the feasibility of the registration generative adversarial network (RegGAN) model in image conversion for performing adaptive radiation therapy on the head and neck and its stability under different cone beam computed tomography (CBCT) models. METHODS A total of 100 CBCT and CT images of patients diagnosed with head and neck tumors were utilized for the training phase, whereas the testing phase involved 40 distinct patients obtained from four different linear accelerators. The RegGAN model was trained and tested to evaluate its performance. The generated synthetic CT (sCT) image quality was compared to that of planning CT (pCT) images by employing metrics such as the mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM). Moreover, the radiation therapy plan was uniformly applied to both the sCT and pCT images to analyze the planning target volume (PTV) dose statistics and calculate the dose difference rate, reinforcing the model's accuracy. RESULTS The generated sCT images had good image quality, and no significant differences were observed among the different CBCT modes. The conversion effect achieved for Synergy was the best, and the MAE decreased from 231.3 ± 55.48 to 45.63 ± 10.78; the PSNR increased from 19.40 ± 1.46 to 26.75 ± 1.32; the SSIM increased from 0.82 ± 0.02 to 0.85 ± 0.04. The quality improvement effect achieved for sCT image synthesis based on RegGAN was obvious, and no significant sCT synthesis differences were observed among different accelerators. CONCLUSION The sCT images generated by the RegGAN model had high image quality, and the RegGAN model exhibited a strong generalization ability across different accelerators, enabling its outputs to be used as reference images for performing adaptive radiation therapy on the head and neck.
Collapse
Affiliation(s)
- Zhenkai Li
- Chengdu University of Technology, Chengdu, China
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | | | - Haodong Li
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lingke Kong
- Manteia Technologies Co., Ltd., Xiamen, China
| | - Huadong Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Benzhe Liang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mingming Chen
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaohang Qin
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Yin
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Zhenjiang Li
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
8
|
Young T, Dowling J, Rai R, Liney G, Greer P, Thwaites D, Holloway L. Clinical validation of MR imaging time reduction for substitute/synthetic CT generation for prostate MRI-only treatment planning. Phys Eng Sci Med 2023; 46:1015-1021. [PMID: 37219797 PMCID: PMC10480277 DOI: 10.1007/s13246-023-01268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/26/2023] [Indexed: 05/24/2023]
Abstract
Radiotherapy treatment planning based only on magnetic resonance imaging (MRI) has become clinically achievable. Though computed tomography (CT) is the gold standard for radiotherapy imaging, directly providing the electron density values needed for planning calculations, MRI has superior soft tissue visualisation to guide treatment planning decisions and optimisation. MRI-only planning removes the need for the CT scan, but requires generation of a substitute/synthetic/pseudo CT (sCT) for electron density information. Shortening the MRI imaging time would improve patient comfort and reduce the likelihood of motion artefacts. A volunteer study was previously carried out to investigate and optimise faster MRI sequences for a hybrid atlas-voxel conversion to sCT for prostate treatment planning. The aim of this follow-on study was to clinically validate the performance of the new optimised sequence for sCT generation in a treated MRI-only prostate patient cohort. 10 patients undergoing MRI-only treatment were scanned on a Siemens Skyra 3T MRI as part of the MRI-only sub-study of the NINJA clinical trial (ACTRN12618001806257). Two sequences were used, the standard 3D T2-weighted SPACE sequence used for sCT conversion which has been previously validated against CT, and a modified fast SPACE sequence, selected based on the volunteer study. Both were used to generate sCT scans. These were then compared to evaluate the fast sequence conversion for anatomical and dosimetric accuracy against the clinically approved treatment plans. The average Mean Absolute Error (MAE) for the body was 14.98 ± 2.35 HU, and for bone was 40.77 ± 5.51 HU. The external volume contour comparison produced a Dice Similarity Coefficient (DSC) of at least 0.976, and an average of 0.985 ± 0.004, and the bony anatomy contour comparison a DSC of at least 0.907, and an average of 0.950 ± 0.018. The fast SPACE sCT agreed with the gold standard sCT within an isocentre dose of -0.28% ± 0.16% and an average gamma pass rate of 99.66% ± 0.41% for a 1%/1 mm gamma tolerance. In this clinical validation study, the fast sequence, which reduced the required imaging time by approximately a factor of 4, produced an sCT with similar clinical dosimetric results compared to the standard sCT, demonstrating its potential for clinical use for treatment planning.
Collapse
Affiliation(s)
- Tony Young
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, Australia
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia
| | - Jason Dowling
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia
- CSIRO Health and Biosecurity, The Australian e-Health & Research Centre, Brisbane, QLD Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW Australia
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW Australia
| | - Robba Rai
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Gary Liney
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW Australia
| | - Peter Greer
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW Australia
- Calvary Mater Newcastle Hospital, Newcastle, NSW Australia
| | - David Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia
| | - Lois Holloway
- Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, Australia
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW Australia
| |
Collapse
|
9
|
Eidex Z, Ding Y, Wang J, Abouei E, Qiu RL, Liu T, Wang T, Yang X. Deep Learning in MRI-guided Radiation Therapy: A Systematic Review. ARXIV 2023:arXiv:2303.11378v2. [PMID: 36994167 PMCID: PMC10055493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
MRI-guided radiation therapy (MRgRT) offers a precise and adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed. MRI-guided radiation therapy offers a precise, adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed with emphasis placed on underlying methods. Studies are further categorized into the areas of segmentation, synthesis, radiomics, and real time MRI. Finally, clinical implications, current challenges, and future directions are discussed.
Collapse
Affiliation(s)
- Zach Eidex
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Yifu Ding
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jing Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Elham Abouei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Tian Liu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
10
|
Nousiainen K, Santurio GV, Lundahl N, Cronholm R, Siversson C, Edmund JM. Evaluation of MRI-only based online adaptive radiotherapy of abdominal region on MR-linac. J Appl Clin Med Phys 2023; 24:e13838. [PMID: 36347050 PMCID: PMC10018672 DOI: 10.1002/acm2.13838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE A hybrid magnetic resonance linear accelerator (MRL) can perform magnetic resonance imaging (MRI) with high soft-tissue contrast to be used for online adaptive radiotherapy (oART). To obtain electron densities needed for the oART dose calculation, a computed tomography (CT) is often deformably registered to MRI. Our aim was to evaluate an MRI-only based synthetic CT (sCT) generation as an alternative to the deformed CT (dCT)-based oART in the abdominal region. METHODS The study data consisted of 57 patients who were treated on a 0.35 T MRL system mainly for abdominal tumors. Simulation MRI-CT pairs of 43 patients were used for training and validation of a prototype convolutional neural network sCT-generation algorithm, based on HighRes3DNet, for the abdominal region. For remaining test patients, sCT images were produced from simulation MRIs and daily MRIs. The dCT-based plans were re-calculated on sCT with identical calculation parameters. The sCT and dCT were compared in terms of geometric agreement and calculated dose. RESULTS The mean and one standard deviation of the geometric agreement metrics over dCT-sCT-pairs were: mean error of 8 ± 10 HU, mean absolute error of 49 ± 10 HU, and Dice similarity coefficient of 55 ± 12%, 60 ± 5%, and 82 ± 15% for bone, fat, and lung tissues, respectively. The dose differences between the sCT and dCT-based dose for planning target volumes were 0.5 ± 0.9%, 0.6 ± 0.8%, and 0.5 ± 0.8% at D2% , D50% , and D98% in physical dose and 0.8 ± 1.4%, 0.8 ± 1.2%, and 0.6 ± 1.1% in biologically effective dose (BED). For organs-at-risk, the dose differences of all evaluated dose-volume histogram points were within [-4.5%, 7.8%] and [-1.1 Gy, 3.5 Gy] in both physical dose and BED. CONCLUSIONS The geometric agreement metrics were within typically reported values and most average relative dose differences were within 1%. Thus, an MRI-only sCT-based approach is a promising alternative to the current clinical practice of the abdominal oART on MRL.
Collapse
Affiliation(s)
- Katri Nousiainen
- Department of Physics, University of Helsinki, Helsinki, Finland.,HUS Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Grichar Valdes Santurio
- Department of Oncology, Radiotherapy Research Unit, Herlev and Gentofte Hospital, Copenhagen University, Herlev, Denmark
| | | | | | | | - Jens M Edmund
- Department of Oncology, Radiotherapy Research Unit, Herlev and Gentofte Hospital, Copenhagen University, Herlev, Denmark.,Nils Bohr Institute, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
11
|
Lapaeva M, La Greca Saint-Esteven A, Wallimann P, Günther M, Konukoglu E, Andratschke N, Guckenberger M, Tanadini-Lang S, Dal Bello R. Synthetic computed tomographies for low-field magnetic resonance-guided radiotherapy in the abdomen. Phys Imaging Radiat Oncol 2022; 24:173-179. [DOI: 10.1016/j.phro.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
|
12
|
Chen J, Dong H, Bai L, Li L, Chen S, Tian X, Pan Y. Multifunctional high- Z nanoradiosensitizers for multimodal synergistic cancer therapy. J Mater Chem B 2022; 10:1328-1342. [PMID: 35018941 DOI: 10.1039/d1tb02524d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radiotherapy (RT) is one of the most common and effective clinical therapies for malignant tumors. However, there are several limitations that undermine the clinical efficacy of cancer RT, including the low X-ray attenuation coefficient of organs, serious damage to normal tissues, and radioresistance in hypoxic tumors. With the rapid development of nanotechnology and nanomedicine, high-Z nanoradiosensitizers provide novel opportunities to overcome radioresistance and improve the efficacy of RT by deposition of radiation energy through photoelectric effects. To date, several types of nanoradiosensitizers have entered clinical trials. Nevertheless, the limitation of the single treatment mode and the unclear mechanism of nanoparticle radiosensitization have hindered the further development of nanoradiosensitizers. In this review, we systematically describe the interaction mechanisms between X-rays and nanomaterials and summarize recent advances in multifunctional high-Z nanomaterials for radiotherapeutic-based multimodal synergistic cancer therapy. Finally, the challenges and prospects are discussed to stimulate the development of nanomedicine-based cancer RT.
Collapse
Affiliation(s)
- Jieyao Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Haiyue Dong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Lu Bai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Linrong Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Sijie Chen
- Ming Wai Lau Centre of Reparative Medicine Karolinska Institutet, Hong Kong
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
13
|
Islam KT, Wijewickrema S, O’Leary S. A Deep Learning Framework for Segmenting Brain Tumors Using MRI and Synthetically Generated CT Images. SENSORS (BASEL, SWITZERLAND) 2022; 22:523. [PMID: 35062484 PMCID: PMC8780247 DOI: 10.3390/s22020523] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Multi-modal three-dimensional (3-D) image segmentation is used in many medical applications, such as disease diagnosis, treatment planning, and image-guided surgery. Although multi-modal images provide information that no single image modality alone can provide, integrating such information to be used in segmentation is a challenging task. Numerous methods have been introduced to solve the problem of multi-modal medical image segmentation in recent years. In this paper, we propose a solution for the task of brain tumor segmentation. To this end, we first introduce a method of enhancing an existing magnetic resonance imaging (MRI) dataset by generating synthetic computed tomography (CT) images. Then, we discuss a process of systematic optimization of a convolutional neural network (CNN) architecture that uses this enhanced dataset, in order to customize it for our task. Using publicly available datasets, we show that the proposed method outperforms similar existing methods.
Collapse
|
14
|
Farjam R, Nagar H, Kathy Zhou X, Ouellette D, Chiara Formenti S, DeWyngaert JK. Deep learning-based synthetic CT generation for MR-only radiotherapy of prostate cancer patients with 0.35T MRI linear accelerator. J Appl Clin Med Phys 2021; 22:93-104. [PMID: 34184390 PMCID: PMC8364266 DOI: 10.1002/acm2.13327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To develop a deep learning model to generate synthetic CT for MR-only radiotherapy of prostate cancer patients treated with 0.35 T MRI linear accelerator. MATERIALS AND METHODS A U-NET convolutional neural network was developed to translate 0.35 T TRUFI MRI into electron density map using a novel cost function equalizing the contribution of various tissue types including fat, muscle, bone, and background air in training. The impact of training time, dataset size, image standardization, and data augmentation approaches was also quantified. Mean absolute error (MAE) between synthetic and planning CTs was calculated to measure the goodness of the model. RESULTS With 20 patients in training, our U-NET model has the potential to generate synthetic CT with a MAE of about 29.68 ± 4.41, 16.34 ± 2.67, 23.36 ± 2.85, and 105.90 ± 22.80 HU over the entire body, fat, muscle, and bone tissues, respectively. As expected, we found that the number of patients used for training and MAE are nonlinearly correlated. Data augmentation and our proposed loss function were effective to improve MAE by ~9% and ~18% in bony voxels, respectively. Increasing the training time and image standardization did not improve the accuracy of the model. CONCLUSION A U-NET model has been developed and tested numerically to generate synthetic CT from 0.35T TRUFI MRI for MR-only radiotherapy of prostate cancer patients. Dosimetric evaluation using a large and independent dataset warrants the validity of the proposed model and the actual number of patients needed for the safe usage of the model in routine clinical workflow.
Collapse
Affiliation(s)
- Reza Farjam
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Himanshu Nagar
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Xi Kathy Zhou
- Public Health ScienceWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - David Ouellette
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | | | - J. Keith DeWyngaert
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| |
Collapse
|