1
|
Sun W, Wang W, Huang Z, Zhao J. Commissioning of a commercial treatment planning system for scanned carbon-ion radiotherapy. J Appl Clin Med Phys 2025; 26:e14580. [PMID: 39611885 PMCID: PMC11905250 DOI: 10.1002/acm2.14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
PURPOSE To commission the RayStation (RS) TPS (treatment planning system) for scanned CIRT (carbon-ion radiotherapy) utilizing pencil beam algorithms (PBv4.2). METHODS The beam model commissioning entailed employing 1D single beams and 2D monoenergetic fields to validate spot profiles with films, assess beam range using Peakfinder measurements, and evaluate fragment spectra through dose-averaged linear energy transfer (LETd) calculations. 3D dose distributions were verified in homogeneous phantoms for both absorbed and relative biological effectiveness (RBE)-weighted doses, and further assessed in double wedge and anthropomorphic phantoms for absorbed dose only. Finally, RBE-weighted dose verification and patient-specific quality assurance were conducted using 58 beams from 20 clinically treated patient plans. RESULTS The results demonstrated good agreement in absolute dose distribution between TPS calculations and measurements, with mean dose discrepancies within 3%. However, deviations were slightly higher (> 1%) for the cases involving the range shifter (RaShi) compared to those without the RaShi (< 1%). Beam range, depth dose distribution, and lateral profiles of spread-out Bragg peaks (SOBPs) closely matched between RS TPS calculations and measurements. Some discrepancies (less than 0.5 mm) were observed at field edges and in penumbra regions due to limitations in simulating asymmetrical spots, but within clinical tolerance. After model tuning, RBE-weighted dose calculations in RS TPS were in agreement with those from the clinically used TPS, except for variations exceeding 3% observed at energies exceeding 408.07 MeV/u, primarily attributed to fragment spectra differences. CONCLUSION Overall, this study validated the RS TPS for calculating absorbed doses against measurements and RBE-weighted doses against a clinically used TPS. The results suggested that the RS TPS could be utilized for CIRT treatment planning, except for energies exceeding 408.07 MeV/u.
Collapse
Affiliation(s)
- Wei Sun
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Weiwei Wang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Shanghai, China
| | - Zhijie Huang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Jingfang Zhao
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| |
Collapse
|
2
|
Li G, Ma N, Wang W, Chen J, Mao J, Jiang G, Wu K. Dose-averaged linear energy transfer within the gross tumor volume of non-small-cell lung cancer affects the local control in carbon-ion radiotherapy. Radiother Oncol 2024; 201:110584. [PMID: 39414084 DOI: 10.1016/j.radonc.2024.110584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND AND PURPOSE High linear energy transfer (LET) radiation exhibits stronger tumor-killing effect. However, the correlation between LET and the therapeutic efficacy in Carbon-ion radiotherapy (CIRT) for locally advanced non-small-cell lung cancer (LA-NSCLC) is currently not clear. This study aimed to investigate the relationship between the dose-averaged LET (LETd) distribution within tumor and local recurrence for LA-NSCLC treated with CIRT. METHODS AND MATERIALS An analysis of 62 consecutive patients with LA-NSCLC who underwent CIRT from 2018 to 2022 was conducted. The LETd distribution was calculated based on their treated plans, and the correlation between local recurrence and LETd, relative biological effectiveness (RBE)-weighted doses (DRBE) and clinical factors was investigated. Receiver operating characteristic (ROC) curve, log-rank test, and Cox regression analysis were performed based on that. RESULTS 16 patients were defined as local recurrence. Overall survival (OS) and local control (LC) at 24 months were 76.9 % and 73.2 %, respectively. The mean LETd in internal gross tumor volume (iGTV) in the local recurrence group was 48.7 keV/µm, significantly lower than the mean LETd of 53.2 keV/µm in the local control group (p = 0.016). No significant difference was observed in DRBE between the local recurrence and local control groups. ROC curve analysis indicated that a percentage of 88 % of volume in iGTV receiving at least 40 keV/µm (V40keV/μm) is the optimal threshold for predicting local recurrence (Area under curve (AUC) = 0.7636). The log-rank test and Cox regression analysis revealed that the LETd value covering 98 % volume of iGTV (LETd98%) was a significant risk factor for LC (p = 0.020). CONCLUSIONS Our study revealed an association between LETd distribution and local recurrence in patients with LA-NSCLC. These findings suggest that lower LETd may increase the probability of local recurrence. We suggest that LETd distribution within iGTV should be routinely assessed in CIRT for lung cancer.
Collapse
Affiliation(s)
- Guangsheng Li
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201315, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.
| | - Ningyi Ma
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201315, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Weiwei Wang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201315, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jian Chen
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201315, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jingfang Mao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201315, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Guoliang Jiang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201315, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Kailiang Wu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201315, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China; Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201315, China.
| |
Collapse
|
3
|
Wang W, Sun J, Zhao J, Cheng J, Jiang G, Wang Z. Up modulation of dose-averaged linear energy transfer by simultaneous integrated boost in carbon-ion radiotherapy for pancreatic carcinoma. J Appl Clin Med Phys 2024; 25:e14279. [PMID: 38259194 PMCID: PMC11163503 DOI: 10.1002/acm2.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Local recurrence in locally advanced pancreatic cancer (LAPC) after carbon-ion radiotherapy (CIRT) may partly attribute to low dose-averaged linear energy transfer (LETd), despite high CIRT dose. PURPOSE This study aimed to investigate the approaches to up-modulate the CIRT LETd and to evaluate the corresponding oxygen enhancement ratio (OER) reduction. METHODS 10 LAPCs that had been irradiated by CIRT with 67.5 Gy (RBE) in 15 fractions were selected. Their original plans were taken as the control plan for the LETd and OER investigations. Our considerations for up-modulating LETd were: (1) to deliver high doses to gross tumor volume core (GTVcore), while keeping dose constraints of the gastrointestinal (GI) tract in tolerance; (2) to put more Bragg-peak (BP) within the modulated targets; (3) to increase the BP density, high doses were necessary; (4) CIRT LETd could be effectively increased to small volumes; and (5) simultaneous integrated boost technique (SIB) could achieve the aforementioned tasks. The LETd and the corresponding OER distributions of each type of SIB plan were evaluated. RESULTS We delivered up to 100 Gy (RBE) to GTVcore using SIB. The mean LETd of GTV increased significantly by 21.3% from 47.8 to 58.0 keV/μm (p < 0.05). Meanwhile, the mean OER of GTVcore decreased by 6.6%, from 1.51 to 1.41 (p < 0.05). The GI LETdS in all modulated plans were not more than those in the original plans. CONCLUSIONS SIB could effectively increase CIRT LETd to LAPC, thus producing reduced OER, which may effectively overcome the radioresistance of LAPCs.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Medical PhysicsShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
- Institute of Modern PhysicsApplied Ion Beam Physics LaboratoryFudan UniversityShanghaiChina
| | - Jiayao Sun
- Department of Medical PhysicsShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Jingfang Zhao
- Department of Medical PhysicsShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
- Department of Radiation OncologyFudan University Cancer CenterShanghaiChina
| | - Jingyi Cheng
- Department of Nuclear MedicineShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Guo‐Liang Jiang
- Department of Radiation OncologyShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Zheng Wang
- Department of Radiation OncologyShanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghai Key Laboratory of Radiation Oncology (20dz2261000)Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| |
Collapse
|
4
|
Wang W, Sun W, Shen H, Zhao J. Validation of the relative biological effectiveness of active-energy scanning carbon-ion radiotherapy on a commercial treatment planning system with a microdosimetic kinetic model. Radiat Oncol 2023; 18:82. [PMID: 37198685 DOI: 10.1186/s13014-023-02267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND The study objective was to validate the relative biological effectiveness (RBE) calculated by the modified microdosimetric kinetic model in RayStation (Ray-MKM) for active-energy scanning carbon-ion radiotherapy. METHODS The Ray-MKM was benchmarked using a spread-out Bragg-peak (SOBP) plan, which was suggested in literature from the National Institute of Radiobiological Science (NIRS) in Japan. The residual RBE differences from the MKM at NIRS (NIRS-MKM) were derived using several SOBP plans with different ranges, SOBP widths, and prescriptions. To investigate the origins of the differences, we compared the saturation-corrected dose-mean specific energy [Formula: see text] of the aforementioned SOBPs. Furthermore, we converted the RBE-weighted doses with the Ray-MKM to those with local effect model I (LEM doses). The purpose was to investigate whether the Ray-MKM could reproduce the RBE-weighted conversion study. RESULTS The benchmark determined the value of the clinical dose scaling factor, [Formula: see text], as 2.40. The target mean RBE deviations between the Ray-MKM and NIRS-MKM were median: 0.6 (minimum: 0.0 to maximum: 1.69) %. The [Formula: see text] difference in-depth led to the RBE difference in-depth and was remarkable at the distal end. The converted LEM doses from the Ray-MKM doses were comparable (the deviation being - 1.8-0.7%) to existing literature. CONCLUSION This study validated the Ray-MKM based on our active-energy scanning carbon-ion beam via phantom studies. The Ray-MKM could generate similar RBEs as the NIRS-MKM after benchmarking. Analysis based on [Formula: see text] indicated that the different beam qualities and fragment spectra caused the RBE differences. Since the absolute dose differences at the distal end were small, we neglected them. Furthermore, each centre may determine its centre-specific [Formula: see text] based on this approach.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
- Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Shanghai, 200433, China
| | - Wei Sun
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China
| | - Hao Shen
- Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Shanghai, 200433, China
| | - Jingfang Zhao
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315, China.
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, 270 Dongan Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|