1
|
Rosengarten H, D'Amore A, Kim HM, Ebrahimi-Fakhari D. ap4b1 -/- zebrafish demonstrate morphological and motor abnormalities. Hum Mol Genet 2025:ddaf056. [PMID: 40267240 DOI: 10.1093/hmg/ddaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVE Hereditary spastic paraplegia type 47 (SPG47) is caused by biallelic loss-of-function variants in the AP4B1 gene, leading to neurodevelopmental and progressive motor impairment. This study aimed to generate and characterize a zebrafish (Danio rerio) model of SPG47 to investigate the role of ap4b1 in neurodevelopment and motor function. METHODS We employed CRISPR/Cas9 gene-editing to generate a stable ap4b1-/- zebrafish line. Behavioral, morphological, and motor function analyses were performed, including survival under stress conditions, spontaneous locomotor activity, light-dark transition assays, and coiling behavior. Axonal length was assessed via immunofluorescence targeting spinal motor neurons. Seizure susceptibility was evaluated using a PTZ paradigm. RESULTS ap4b1-/- zebrafish exhibited significantly reduced axonal length of spinal motor neurons, impaired motor function, and developmental malformations, including brachycephaly, reduced body length, bent spines, and craniofacial defects. Increased tail coiling and reduced spontaneous activity were observed in larvae, alongside absent habituation to light-dark stimuli. Under stress conditions, survival rates were significantly lower in the knockout group compared to controls. Despite early hyperexcitability, no significant increase in PTZ-induced seizures was observed. INTERPRETATION This study characterizes an ap4b1-/- zebrafish model that recapitulates some phenotypes of SPG47, including motor deficits and morphological abnormalities. These findings support the utility of zebrafish for studying AP-4 deficiency and provide a platform for investigating the molecular mechanisms underlying SPG47.
Collapse
Affiliation(s)
- Helena Rosengarten
- Movement Disorders Program, Department of Neurology & The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Mittelallee 9, 13353 Berlin, Germany
| | - Angelica D'Amore
- Movement Disorders Program, Department of Neurology & The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Hyo-Min Kim
- Movement Disorders Program, Department of Neurology & The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Darius Ebrahimi-Fakhari
- Movement Disorders Program, Department of Neurology & The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| |
Collapse
|
2
|
Hassani Nia F, Wittamer V. Zebrafish in neurodevelopmental disorders studies: Genetic models and pathological involvement of microglia. Dev Med Child Neurol 2025. [PMID: 40156170 DOI: 10.1111/dmcn.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 04/01/2025]
Abstract
Neurodevelopmental disorders (NDDs) are a group of brain disorders with a neonatal or early childhood onset and are lifelong. Various factors including genetics, and environmental and immune-related risk factors have been associated with NDDs. Given the complex nature of these disorders, multiple animal models have been used to investigate their aetiology and underlying cellular and molecular mechanisms. Recently, zebrafish have attracted great attention as an emerging model for studying NDDs. In addition to their easy maintenance, short developmental cycle, ex utero embryonic evolution, and optical clarity, zebrafish have successfully recapitulated phenotypes seen in human genetic disorders. This review explores the growing role of zebrafish in NDD research, by summarizing recently developed zebrafish genetic models for autism spectrum disorder, schizophrenia, and cerebral palsy. We then explore the potential of zebrafish as a model for studying NDDs linked to immune system dysfunction.
Collapse
Affiliation(s)
- Fatemeh Hassani Nia
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire Jacques E. Dumont, Brussels, Belgium
- ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Valerie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire Jacques E. Dumont, Brussels, Belgium
- ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
Ziegler M, Böger C, Alecu JE, Kim HM, Saffari A, Davies AK, Sahin M, Ebrahimi-Fakhari D. Arrayed CRISPR/Cas9 Loss-Of-Function Screen in a Neuronal Model of Adaptor Protein Complex 4 Deficiency Identifies Modulators of ATG9A Trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.22.639634. [PMID: 40027661 PMCID: PMC11870607 DOI: 10.1101/2025.02.22.639634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Biallelic loss-of-function variants in the adaptor protein complex 4 (AP-4) disrupt trafficking of transmembrane proteins at the trans -Golgi network, including the autophagy-related protein 9A (ATG9A), leading to childhood-onset hereditary spastic paraplegia (AP-4-HSP). AP-4-HSP is characterized by features of both a neurodevelopmental and degenerative neurological disease. To investigate the molecular mechanisms underlying AP-4-HSP and identify potential therapeutic targets, we conducted an arrayed CRISPR/Cas9 loss-of-function screen of 8,478 genes, targeting the 'druggable genome', in a human neuronal model of AP-4 deficiency. Through this phenotypic screen and subsequent experiments, key modulators of ATG9A trafficking were identified, and complementary pathway analyses provided insights into the regulatory landscape of ATG9A transport. Knockdown of ANPEP and NPM1 enhanced ATG9A availability outside the trans -Golgi network, suggesting they regulate ATG9A localization. These findings deepen our understanding of ATG9A trafficking in the context of AP-4 deficiency and offer a framework for the development of targeted interventions for AP-4-HSP.
Collapse
|
4
|
Della Vecchia S, Imbrici P, Liantonio A, Naef V, Damiani D, Licitra R, Bernardi S, Marchese M, Santorelli FM. Dapagliflozin ameliorates Lafora disease phenotype in a zebrafish model. Biomed Pharmacother 2025; 183:117800. [PMID: 39753095 PMCID: PMC11794196 DOI: 10.1016/j.biopha.2024.117800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 02/08/2025] Open
Abstract
Lafora disease (LD) is an ultra-rare and still incurable neurodegenerative condition. Although several therapeutic strategies are being explored, including gene therapy, there are currently no treatments that can alleviate the course of the disease and slow its progression. Recently, gliflozins, a series of SGLT2 transporter inhibitors approved for use in type 2 diabetes mellitus, heart failure and chronic kidney disease, have been proposed as possible repositioning drugs for the treatment of LD. With this in mind, we tested dapagliflozin (50 µM), canagliflozin (2.5 µM) and empagliflozin (200 µM) in our epm2a-/- zebrafish model, investigating their effects on pathological behaviour. In the case of dapagliflozin, we also investigated the possible mechanisms of action. Overall, the gliflozins reduced or rescued neuronal hyperexcitability and locomotor impairment. Dapagliflozin also reduced spontaneous seizure-like events in epm2a-/- larvae. At the biochemical and molecular level, dapagliflozin was found to slightly reduce glycogen content, and suppress inflammation and oxidative stress. It also ameliorates autophagic homeostasis and improves lysosomal markers. In conclusion, our preclinical study showed that dapagliflozin was able to ameliorate part of the pathological phenotype of epm2a-/- zebrafish larvae and could potentially be a suitable drug for repurposing in LD. However, since our model does not present Lafora bodies (LBs), at this early disease stage at least, it would be important to use mouse models in order to ascertain whether it is able to prevent or reduce LB formation.
Collapse
Affiliation(s)
- Stefania Della Vecchia
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, Florence 50139, Italy.
| | - Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Naef
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | - Devid Damiani
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | - Rosario Licitra
- Department of Veterinary Sciences, University of Pisa, Pisa 56124, Italy
| | - Sara Bernardi
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | - Maria Marchese
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | | |
Collapse
|
5
|
Dafsari HS, Martinelli D, Saffari A, Ebrahimi‐Fakhari D, Fanto M, Dionisi‐Vici C, Jungbluth H. An update on autophagy disorders. J Inherit Metab Dis 2025; 48:e12798. [PMID: 39420677 PMCID: PMC11669743 DOI: 10.1002/jimd.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Macroautophagy is a highly conserved cellular pathway for the degradation and recycling of defective cargo including proteins, organelles, and macromolecular complexes. As autophagy is particularly relevant for cellular homeostasis in post-mitotic tissues, congenital disorders of autophagy, due to monogenic defects in key autophagy genes, share a common "clinical signature" including neurodevelopmental, neurodegenerative, and neuromuscular features, as well as variable abnormalities of the eyes, skin, heart, bones, immune cells, and other organ systems, depending on the expression pattern and the specific function of the defective proteins. Since the clinical and genetic resolution of EPG5-related Vici syndrome, the paradigmatic congenital disorder of autophagy, the widespread use of massively parallel sequencing has resulted in the identification of a growing number of autophagy-associated disease genes, encoding members of the core autophagy machinery as well as related proteins. Recently identified monogenic disorders linking selective autophagy, vesicular trafficking, and other pathways have further expanded the molecular and phenotypical spectrum of congenital disorders of autophagy as a clinical disease spectrum. Moreover, significant advances in basic research have enhanced the understanding of the underlying pathophysiology as a basis for therapy development. Here, we review (i) autophagy in the context of other intracellular trafficking pathways; (ii) the main congenital disorders of autophagy and their typical clinico-pathological signatures; and (iii) the recommended primary health surveillance in monogenic disorders of autophagy based on available evidence. We further discuss recently identified molecular mechanisms that inform the current understanding of autophagy in health and disease, as well as perspectives on future therapeutic approaches.
Collapse
Affiliation(s)
- Hormos Salimi Dafsari
- Department of Pediatrics and Center for Rare Diseases, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Max‐Planck‐Institute for Biology of Ageing; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD)CologneGermany
| | - Diego Martinelli
- Division of Metabolic DiseasesBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Afshin Saffari
- Division of Child Neurology and Inherited Metabolic DiseasesHeidelberg University HospitalHeidelbergGermany
| | - Darius Ebrahimi‐Fakhari
- Department of Neurology and F.M. Kirby Neurobiology CenterBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Manolis Fanto
- Department of Basic & Clinical NeurosciencesInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUK
| | - Carlo Dionisi‐Vici
- Division of Metabolic DiseasesBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina London Children's HospitalGuy's and St Thomas' Hospital NHS Foundation TrustLondonUK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signaling SectionFaculty of Life Sciences and Medicine (FoLSM), King's College LondonLondonUK
| |
Collapse
|
6
|
Naef V, Lieto M, Satolli S, De Micco R, Troisi M, Pasquariello R, Doccini S, Privitera F, Filla A, Tessitore A, Santorelli FM. SCAR32: Functional characterization and expansion of the clinical-genetic spectrum. Ann Clin Transl Neurol 2024; 11:1879-1886. [PMID: 38837640 PMCID: PMC11251466 DOI: 10.1002/acn3.52094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVE Biallelic mutations in PRDX3 have been linked to autosomal recessive spinocerebellar ataxia type 32. In this study, which aims to contribute to the growing body of knowledge on this rare disease, we identified two unrelated patients with mutations in PRDX3. We explored the impact of PRDX3 mutation in patient skin fibroblasts and the role of the gene in neurodevelopment. METHODS We performed trio exome sequencing that identified mutations in PRDX3 in two unrelated patients. We also performed functional studies in patient skin fibroblasts and generated a "crispant" zebrafish (Danio rerio) model to investigate the role of the gene during nervous system development. RESULTS Our study reports two additional patients. Patient 1 is a 19-year-old male who showed a novel homozygous c.525_535delGTTAGAAGGTT (p. Leu176TrpfsTer11) mutation as the genetic cause of cerebellar ataxia. Patient 2 is a 20-year-old male who was found to present the known c.425C>G/p. Ala142Gly variant in compound heterozygosity with the p. Leu176TrpfsTer11 one. While the fibroblast model failed to recapitulate the pathological features associated with PRDX3 loss of function, our functional characterization of the prdx3 zebrafish model revealed motor defects, increased susceptibility to reactive oxygen species-triggered apoptosis, and an impaired oxygen consumption rate. CONCLUSIONS We identified a new variant, thereby expanding the genetic spectrum of PRDX3-related disease. We developed a novel zebrafish model to investigate the consequences of prdx3 depletion on neurodevelopment and thus offered a potential new tool for identifying new treatment opportunities.
Collapse
Affiliation(s)
- Valentina Naef
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Maria Lieto
- Department of Neurology and Stroke UnitOspedale del Mare HospitalNaplesItaly
| | - Sara Satolli
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Rosa De Micco
- Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Martina Troisi
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Rosa Pasquariello
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Stefano Doccini
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Flavia Privitera
- Department Neurobiology and Molecular MedicineIRCCS Fondazione Stella MarisPisa56128Italy
| | - Alessandro Filla
- Department of NeurosciencesReproductive and Odontostomatological SciencesFederico II UniversityNaplesItaly
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical SciencesUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | | |
Collapse
|
7
|
Garg V, Geurten BRH. Diving deep: zebrafish models in motor neuron degeneration research. Front Neurosci 2024; 18:1424025. [PMID: 38966756 PMCID: PMC11222423 DOI: 10.3389/fnins.2024.1424025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
In the dynamic landscape of biomedical science, the pursuit of effective treatments for motor neuron disorders like hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) remains a key priority. Central to this endeavor is the development of robust animal models, with the zebrafish emerging as a prime candidate. Exhibiting embryonic transparency, a swift life cycle, and significant genetic and neuroanatomical congruencies with humans, zebrafish offer substantial potential for research. Despite the difference in locomotion-zebrafish undulate while humans use limbs, the zebrafish presents relevant phenotypic parallels to human motor control disorders, providing valuable insights into neurodegenerative diseases. This review explores the zebrafish's inherent traits and how they facilitate profound insights into the complex behavioral and cellular phenotypes associated with these disorders. Furthermore, we examine recent advancements in high-throughput drug screening using the zebrafish model, a promising avenue for identifying therapeutically potent compounds.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Lower Saxony, Germany
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
8
|
Damiani D, Baggiani M, Della Vecchia S, Naef V, Santorelli FM. Pluripotent Stem Cells as a Preclinical Cellular Model for Studying Hereditary Spastic Paraplegias. Int J Mol Sci 2024; 25:2615. [PMID: 38473862 DOI: 10.3390/ijms25052615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) comprise a family of degenerative diseases mostly hitting descending axons of corticospinal neurons. Depending on the gene and mutation involved, the disease could present as a pure form with limb spasticity, or a complex form associated with cerebellar and/or cortical signs such as ataxia, dysarthria, epilepsy, and intellectual disability. The progressive nature of HSPs invariably leads patients to require walking canes or wheelchairs over time. Despite several attempts to ameliorate the life quality of patients that have been tested, current therapeutical approaches are just symptomatic, as no cure is available. Progress in research in the last two decades has identified a vast number of genes involved in HSP etiology, using cellular and animal models generated on purpose. Although unanimously considered invaluable tools for basic research, those systems are rarely predictive for the establishment of a therapeutic approach. The advent of induced pluripotent stem (iPS) cells allowed instead the direct study of morphological and molecular properties of the patient's affected neurons generated upon in vitro differentiation. In this review, we revisited all the present literature recently published regarding the use of iPS cells to differentiate HSP patient-specific neurons. Most studies have defined patient-derived neurons as a reliable model to faithfully mimic HSP in vitro, discovering original findings through immunological and -omics approaches, and providing a platform to screen novel or repurposed drugs. Thereby, one of the biggest hopes of current HSP research regards the use of patient-derived iPS cells to expand basic knowledge on the disease, while simultaneously establishing new therapeutic treatments for both generalized and personalized approaches in daily medical practice.
Collapse
Affiliation(s)
- Devid Damiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Matteo Baggiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Stefania Della Vecchia
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Valentina Naef
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| |
Collapse
|
9
|
Saffari A, Brechmann B, Böger C, Saber WA, Jumo H, Whye D, Wood D, Wahlster L, Alecu JE, Ziegler M, Scheffold M, Winden K, Hubbs J, Buttermore ED, Barrett L, Borner GHH, Davies AK, Ebrahimi-Fakhari D, Sahin M. High-content screening identifies a small molecule that restores AP-4-dependent protein trafficking in neuronal models of AP-4-associated hereditary spastic paraplegia. Nat Commun 2024; 15:584. [PMID: 38233389 PMCID: PMC10794252 DOI: 10.1038/s41467-023-44264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Unbiased phenotypic screens in patient-relevant disease models offer the potential to detect therapeutic targets for rare diseases. In this study, we developed a high-throughput screening assay to identify molecules that correct aberrant protein trafficking in adapter protein complex 4 (AP-4) deficiency, a rare but prototypical form of childhood-onset hereditary spastic paraplegia characterized by mislocalization of the autophagy protein ATG9A. Using high-content microscopy and an automated image analysis pipeline, we screened a diversity library of 28,864 small molecules and identified a lead compound, BCH-HSP-C01, that restored ATG9A pathology in multiple disease models, including patient-derived fibroblasts and induced pluripotent stem cell-derived neurons. We used multiparametric orthogonal strategies and integrated transcriptomic and proteomic approaches to delineate potential mechanisms of action of BCH-HSP-C01. Our results define molecular regulators of intracellular ATG9A trafficking and characterize a lead compound for the treatment of AP-4 deficiency, providing important proof-of-concept data for future studies.
Collapse
Affiliation(s)
- Afshin Saffari
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Barbara Brechmann
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cedric Böger
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wardiya Afshar Saber
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hellen Jumo
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dosh Whye
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Delaney Wood
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lara Wahlster
- Department of Hematology & Oncology, Boston Children's Hospital & Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Julian E Alecu
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marvin Ziegler
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marlene Scheffold
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kellen Winden
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jed Hubbs
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth D Buttermore
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lee Barrett
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, 82152, Germany
| | - Alexandra K Davies
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, 82152, Germany
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Darius Ebrahimi-Fakhari
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Mustafa Sahin
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Li Y, Zhang C, Peng G. Ap4s1 truncation leads to axonal defects in a zebrafish model of spastic paraplegia 52. Int J Dev Neurosci 2023; 83:753-764. [PMID: 37767851 DOI: 10.1002/jdn.10303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Biallelic mutations in AP4S1, the σ4 subunit of the adaptor protein complex 4 (AP-4), lead to autosomal recessive spastic paraplegia 52 (SPG52). It is a subtype of AP-4-associated hereditary spastic paraplegia (AP-4-HSP), a complex childhood-onset neurogenetic disease characterized by progressive spastic paraplegia of the lower limbs. This disease has so far lacked effective treatment, in part due to a lack of suitable animal models. Here, we used CRISPR/Cas9 technology to generate a truncation mutation in the ap4s1 gene in zebrafish. The ap4s1 truncation led to motor impairment, delayed neurodevelopment, and distal axonal degeneration. This animal model is useful for further research into AP-4 and AP-4-HSP.
Collapse
Affiliation(s)
- Yiduo Li
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Cuizhen Zhang
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Gang Peng
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Kim J, Bang J, Ryu B, Kim CY, Park JH. Flubendazole exposure disrupts neural development and function of zebrafish embryos (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165376. [PMID: 37422240 DOI: 10.1016/j.scitotenv.2023.165376] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/14/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Flubendazole (FBZ) is a benzimidazole anthelmintic drug widely used for treating parasitic infections by disrupting microtubule formation and function through tubulin binding. Recently, its use has extended to include anticancer applications, leading to increased environmental exposure to benzimidazole drugs. However, the impact of FBZ on neural development in aquatic organisms, particularly in aquatic vertebrates, remains poorly understood. This study aimed to investigate the potential developmental toxicity of FBZ during neural development using zebrafish model. Various assessments, including analysis of overall developmental changes, morphological abnormalities, apoptosis, gene expression alterations, axon length measurements, and electrophysiological neural function, were performed. FBZ exposure resulted in concentration-dependent effects on survival rate, hatching rate, heartbeat, and the occurrence of developmental abnormalities. Notably, FBZ-induced changes included reductions in body length, head size, and eye size, as well as the detection of apoptotic cells in the central nervous system. Gene expression analysis revealed upregulation of apoptosis-related genes (p53, casp3, and casp8), downregulation of neural differentiation-related genes (shha, nrd, ngn1, and elavl3), and alterations in neural maturation and axon growth-related genes (gap43, mbp, and syn2a). Additionally, shortened motor neuron axon length and impaired electrophysiological neural function were observed. These findings provide novel insights into the potential risks of FBZ on the neural development of zebrafish embryos, emphasizing the need for risk prevention strategies and therapeutic approaches to address the environmental toxicity of benzimidazole anthelmintics.
Collapse
Affiliation(s)
- Jin Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Junpil Bang
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Bokyeong Ryu
- Department of Biomedical Informatics, College of Applied Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jae-Hak Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Liu Y. Zebrafish as a Model Organism for Studying Pathologic Mechanisms of Neurodegenerative Diseases and other Neural Disorders. Cell Mol Neurobiol 2023; 43:2603-2620. [PMID: 37004595 PMCID: PMC11410131 DOI: 10.1007/s10571-023-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
Zebrafish are widely considered an excellent vertebrate model for studying the pathogenesis of human diseases because of their transparency of embryonic development, easy breeding, high similarity with human genes, and easy gene manipulation. Previous studies have shown that zebrafish as a model organism provides an ideal operating platform for clarifying the pathological and molecular mechanisms of neurodegenerative diseases and related human diseases. This review mainly summarizes the achievements and prospects of zebrafish used as model organisms in the research of neurodegenerative diseases and other human diseases related to the nervous system in recent years. In the future study of human disease mechanisms, the application of the zebrafish model will continue to provide a valuable operating platform and technical support for investigating and finding better prevention and treatment of these diseases, which has broad application prospects and practical significance. Zebrafish models used in neurodegenerative diseases and other diseases related to the nervous system.
Collapse
Affiliation(s)
- Yanying Liu
- Department of Basic Medicine, School of Nursing and Health, Qingdao Huanghai University, Qingdao, 266427, China.
| |
Collapse
|
13
|
Saffari A, Brechmann B, Boeger C, Saber WA, Jumo H, Whye D, Wood D, Wahlster L, Alecu J, Ziegler M, Scheffold M, Winden K, Hubbs J, Buttermore E, Barrett L, Borner G, Davies A, Sahin M, Ebrahimi-Fakhari D. High-Content Small Molecule Screen Identifies a Novel Compound That Restores AP-4-Dependent Protein Trafficking in Neuronal Models of AP-4-Associated Hereditary Spastic Paraplegia. RESEARCH SQUARE 2023:rs.3.rs-3036166. [PMID: 37398196 PMCID: PMC10312991 DOI: 10.21203/rs.3.rs-3036166/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Unbiased phenotypic screens in patient-relevant disease models offer the potential to detect novel therapeutic targets for rare diseases. In this study, we developed a high-throughput screening assay to identify molecules that correct aberrant protein trafficking in adaptor protein complex 4 (AP-4) deficiency, a rare but prototypical form of childhood-onset hereditary spastic paraplegia, characterized by mislocalization of the autophagy protein ATG9A. Using high-content microscopy and an automated image analysis pipeline, we screened a diversity library of 28,864 small molecules and identified a lead compound, C-01, that restored ATG9A pathology in multiple disease models, including patient-derived fibroblasts and induced pluripotent stem cell-derived neurons. We used multiparametric orthogonal strategies and integrated transcriptomic and proteomic approaches to delineate putative molecular targets of C-01 and potential mechanisms of action. Our results define molecular regulators of intracellular ATG9A trafficking and characterize a lead compound for the treatment of AP-4 deficiency, providing important proof-of-concept data for future Investigational New Drug (IND)-enabling studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Dosh Whye
- Boston Children's Hospital, Harvard Medical School
| | - Delaney Wood
- Boston Children's Hospital, Harvard Medical School
| | | | - Julian Alecu
- Boston Children's Hospital, Harvard Medical School
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Naef V, Meschini MC, Tessa A, Morani F, Corsinovi D, Ogi A, Marchese M, Ori M, Santorelli FM, Doccini S. Converging Role for REEP1/SPG31 in Oxidative Stress. Int J Mol Sci 2023; 24:ijms24043527. [PMID: 36834939 PMCID: PMC9959426 DOI: 10.3390/ijms24043527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Mutations in the receptor expression-enhancing protein 1 gene (REEP1) are associated with hereditary spastic paraplegia type 31 (SPG31), a neurological disorder characterized by length-dependent degeneration of upper motor neuron axons. Mitochondrial dysfunctions have been observed in patients harboring pathogenic variants in REEP1, suggesting a key role of bioenergetics in disease-related manifestations. Nevertheless, the regulation of mitochondrial function in SPG31 remains unclear. To elucidate the pathophysiology underlying REEP1 deficiency, we analyzed in vitro the impact of two different mutations on mitochondrial metabolism. Together with mitochondrial morphology abnormalities, loss-of-REEP1 expression highlighted a reduced ATP production with increased susceptibility to oxidative stress. Furthermore, to translate these findings from in vitro to preclinical models, we knocked down REEP1 in zebrafish. Zebrafish larvae showed a significant defect in motor axon outgrowth leading to motor impairment, mitochondrial dysfunction, and reactive oxygen species accumulation. Protective antioxidant agents such as resveratrol rescued free radical overproduction and ameliorated the SPG31 phenotype both in vitro and in vivo. Together, our findings offer new opportunities to counteract neurodegeneration in SPG31.
Collapse
Affiliation(s)
- Valentina Naef
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Maria C. Meschini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Alessandra Tessa
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Debora Corsinovi
- Department of Biology, University of Pisa, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Asahi Ogi
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Maria Marchese
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Michela Ori
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Filippo M. Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Correspondence: ; Tel.: +39-050-886-311
| |
Collapse
|
15
|
Pembridge OG, Wallace NS, Clements TP, Jackson LP. AP-4 loss in CRISPR-edited zebrafish affects early embryo development. Adv Biol Regul 2023; 87:100945. [PMID: 36642642 PMCID: PMC9992121 DOI: 10.1016/j.jbior.2022.100945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Mutations in the heterotetrametric adaptor protein 4 (AP-4; ε/β4/μ4/σ4 subunits) membrane trafficking coat complex lead to complex neurological disorders characterized by spastic paraplegia, microcephaly, and intellectual disabilities. Understanding molecular mechanisms underlying these disorders continues to emerge with recent identification of an essential autophagy protein, ATG9A, as an AP-4 cargo. Significant progress has been made uncovering AP-4 function in cell culture and patient-derived cell lines, and ATG9A trafficking by AP-4 is considered a potential target for gene therapy approaches. In contrast, understanding how AP-4 trafficking affects development and function at the organismal level has long been hindered by loss of conserved AP-4 genes in key model systems (S. cerevisiae, C. elegans, D. melanogaster). However, zebrafish (Danio rerio) have retained AP-4 and can serve as an important model system for studying both the nervous system and overall development. We undertook gene editing in zebrafish using a CRISPR-ExoCas9 knockout system to determine how loss of single AP-4, or its accessory protein tepsin, genes affect embryo development 24 h post-fertilization (hpf). Single gene-edited embryos display abnormal head morphology and neural necrosis. We further conducted the first exploration of how AP-4 single gene knockouts in zebrafish embryos affect expression levels and patterns of two autophagy genes, atg9a and map1lc3b. This work suggests zebrafish may be further adapted and developed as a tool to uncover AP-4 function in membrane trafficking and autophagy in the context of a model organism.
Collapse
Affiliation(s)
- Olivia G Pembridge
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Natalie S Wallace
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Thomas P Clements
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
16
|
Trehalose Treatment in Zebrafish Model of Lafora Disease. Int J Mol Sci 2022; 23:ijms23126874. [PMID: 35743315 PMCID: PMC9224929 DOI: 10.3390/ijms23126874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023] Open
Abstract
Mutations in the EPM2A gene encoding laforin cause Lafora disease (LD), a progressive myoclonic epilepsy characterized by drug-resistant seizures and progressive neurological impairment. To date, rodents are the only available models for studying LD; however, their use for drug screening is limited by regulatory restrictions and high breeding costs. To investigate the role of laforin loss of function in early neurodevelopment, and to screen for possible new compounds for treating the disorder, we developed a zebrafish model of LD. Our results showed the epm2a−/− zebrafish to be a faithful model of LD, exhibiting the main disease features, namely motor impairment and neuronal hyperexcitability with spontaneous seizures. The model also showed increased inflammatory response and apoptotic death, as well as an altered autophagy pathway that occurs early in development and likely contributes to the disease progression. Early administration of trehalose was found to be effective for rescuing motor impairment and neuronal hyperexcitability associated with seizures. Our study adds a new tool for investigating LD and might help to identify new treatment opportunities.
Collapse
|
17
|
Doccini S, Marchese M, Morani F, Gammaldi N, Mero S, Pezzini F, Soliymani R, Santi M, Signore G, Ogi A, Rocchiccioli S, Kanninen KM, Simonati A, Lalowski MM, Santorelli FM. Lysosomal Proteomics Links Disturbances in Lipid Homeostasis and Sphingolipid Metabolism to CLN5 Disease. Cells 2022; 11:1840. [PMID: 35681535 PMCID: PMC9180748 DOI: 10.3390/cells11111840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
CLN5 disease (MIM: 256731) represents a rare late-infantile form of neuronal ceroid lipofuscinosis (NCL), caused by mutations in the CLN5 gene that encodes the CLN5 protein (CLN5p), whose physiological roles stay unanswered. No cure is currently available for CLN5 patients and the opportunities for therapies are lagging. The role of lysosomes in the neuro-pathophysiology of CLN5 disease represents an important topic since lysosomal proteins are directly involved in the primary mechanisms of neuronal injury occurring in various NCL forms. We developed and implemented a lysosome-focused, label-free quantitative proteomics approach, followed by functional validations in both CLN5-knockout neuronal-like cell lines and Cln5-/- mice, to unravel affected pathways and modifying factors involved in this disease scenario. Our results revealed a key role of CLN5p in lipid homeostasis and sphingolipid metabolism and highlighted mutual NCL biomarkers scored with high lysosomal confidence. A newly generated cln5 knockdown zebrafish model recapitulated most of the pathological features seen in NCL disease. To translate the findings from in-vitro and preclinical models to patients, we evaluated whether two FDA-approved drugs promoting autophagy via TFEB activation or inhibition of the glucosylceramide synthase could modulate in-vitro ROS and lipid overproduction, as well as alter the locomotor phenotype in zebrafish. In summary, our data advance the general understanding of disease mechanisms and modifying factors in CLN5 disease, which are recurring in other NCL forms, also stimulating new pharmacological treatments.
Collapse
Affiliation(s)
- Stefano Doccini
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
| | - Maria Marchese
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
| | - Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Nicola Gammaldi
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
- Ph.D. Program in Neuroscience, University of Florence, 50121 Florence, Italy
| | - Serena Mero
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
| | - Francesco Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (F.P.); (A.S.)
| | - Rabah Soliymani
- HiLIFE, Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Melissa Santi
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127 Pisa, Italy;
| | | | - Asahi Ogi
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
| | | | - Katja M. Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Alessandro Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (F.P.); (A.S.)
| | - Maciej M. Lalowski
- HiLIFE, Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Institute of Bioorganic Chemistry, PAS, Department of Biomedical Proteomics, 61-704 Poznan, Poland
| | - Filippo M. Santorelli
- Molecular Medicine–IRCCS Stella Maris, 56128 Pisa, Italy; (M.M.); (N.G.); (S.M.); (A.O.)
| |
Collapse
|
18
|
Davies AK, Alecu JE, Ziegler M, Vasilopoulou CG, Merciai F, Jumo H, Afshar-Saber W, Sahin M, Ebrahimi-Fakhari D, Borner GHH. AP-4-mediated axonal transport controls endocannabinoid production in neurons. Nat Commun 2022; 13:1058. [PMID: 35217685 PMCID: PMC8881493 DOI: 10.1038/s41467-022-28609-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/08/2022] [Indexed: 01/20/2023] Open
Abstract
The adaptor protein complex AP-4 mediates anterograde axonal transport and is essential for axon health. AP-4-deficient patients suffer from a severe neurodevelopmental and neurodegenerative disorder. Here we identify DAGLB (diacylglycerol lipase-beta), a key enzyme for generation of the endocannabinoid 2-AG (2-arachidonoylglycerol), as a cargo of AP-4 vesicles. During normal development, DAGLB is targeted to the axon, where 2-AG signalling drives axonal growth. We show that DAGLB accumulates at the trans-Golgi network of AP-4-deficient cells, that axonal DAGLB levels are reduced in neurons from a patient with AP-4 deficiency, and that 2-AG levels are reduced in the brains of AP-4 knockout mice. Importantly, we demonstrate that neurite growth defects of AP-4-deficient neurons are rescued by inhibition of MGLL (monoacylglycerol lipase), the enzyme responsible for 2-AG hydrolysis. Our study supports a new model for AP-4 deficiency syndrome in which axon growth defects arise through spatial dysregulation of endocannabinoid signalling. Davies et al. identify a putative mechanism underlying the childhood neurological disorder AP-4 deficiency syndrome. In the absence of AP-4, an enzyme that makes 2-AG is not transported to the axon, leading to axonal growth defects, which can be rescued by inhibition of 2-AG breakdown.
Collapse
Affiliation(s)
- Alexandra K Davies
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| | - Julian E Alecu
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marvin Ziegler
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, Heidelberg, 69120, Germany
| | - Catherine G Vasilopoulou
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Fabrizio Merciai
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.,Department of Pharmacy and PhD Program in Drug Discovery and Development, University of Salerno, 84084, Fisciano, SA, Italy
| | - Hellen Jumo
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wardiya Afshar-Saber
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| |
Collapse
|
19
|
Shin J, Nile A, Oh JW. Role of adaptin protein complexes in intracellular trafficking and their impact on diseases. Bioengineered 2021; 12:8259-8278. [PMID: 34565296 PMCID: PMC8806629 DOI: 10.1080/21655979.2021.1982846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Adaptin proteins (APs) play a crucial role in intracellular cell trafficking. The 'classical' role of APs is carried out by AP1‒3, which bind to clathrin, cargo, and accessory proteins. Accordingly, AP1-3 are crucial for both vesicle formation and sorting. All APs consist of four subunits that are indispensable for their functions. In fact, based on studies using cells, model organism knockdown/knock-out, and human variants, each subunit plays crucial roles and contributes to the specificity of each AP. These studies also revealed that the sorting and intracellular trafficking function of AP can exert varying effects on pathology by controlling features such as cell development, signal transduction related to the apoptosis and proliferation pathways in cancer cells, organelle integrity, receptor presentation, and viral infection. Although the roles and functions of AP1‒3 are relatively well studied, the functions of the less abundant and more recently identified APs, AP4 and AP5, are still to be investigated. Further studies on these APs may enable a better understanding and targeting of specific diseases.APs known or suggested locations and functions.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Ebrahimi-Fakhari D, Alecu JE, Ziegler M, Geisel G, Jordan C, D'Amore A, Yeh RC, Akula SK, Saffari A, Prabhu SP, Sahin M, Yang E. Systematic Analysis of Brain MRI Findings in Adaptor Protein Complex 4-Associated Hereditary Spastic Paraplegia. Neurology 2021; 97:e1942-e1954. [PMID: 34544818 DOI: 10.1212/wnl.0000000000012836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND OBJECTIVES AP-4-associated hereditary spastic paraplegia (AP-4-HSP: SPG47, SPG50, SPG51, SPG52) is an emerging cause of childhood-onset hereditary spastic paraplegia and mimic of cerebral palsy. This study aims to define the spectrum of brain MRI findings in AP-4-HSP and to investigate radioclinical correlations. METHODS We performed a systematic qualitative and quantitative analysis of 107 brain MRI studies from 76 individuals with genetically confirmed AP-4-HSP and correlation with clinical findings including surrogates of disease severity. RESULTS We define AP-4-HSP as a disorder of gray and white matter and demonstrate that abnormal myelination is common and that metrics of reduced white matter volume correlate with severity of motor symptoms. We identify a common diagnostic imaging signature consisting of (1) a thin splenium of the corpus callosum, (2) an absent or thin anterior commissure, (3) characteristic signal abnormalities of the forceps minor ("ears of the grizzly sign"), and (4) periventricular white matter abnormalities. The presence of 2 or more of these findings has a sensitivity of ∼99% for detecting AP-4-HSP; the combination of all 4 is found in ∼45% of cases. Compared to other HSPs with a thin corpus callosum, the absent anterior commissure appears to be specific to AP-4-HSP. Our analysis identified a subset of patients with polymicrogyria, underscoring the role of AP-4 in early brain development. These patients displayed a higher prevalence of seizures and status epilepticus, many at a young age. DISCUSSION Our findings define the MRI spectrum of AP-4-HSP, providing opportunities for early diagnosis, identification of individuals at risk for complications, and a window into the role of the AP-4 complex in brain development and neurodegeneration.
Collapse
Affiliation(s)
- Darius Ebrahimi-Fakhari
- From the Department of Neurology (D.E.-F., J.E.A., M.Z., G.G., C.J., A.D., A.S., M.S.), and Division of Neuroradiology, Department of Radiology (S.P.P., E.Y.), The Manton Center for Orphan Disease Research (D.E.-F., R.C.Y., S.K.A.), Rosamund Stone Zander Translational Neuroscience Center (M.S.), and Division of Genetics and Genomics (D.E.-F., R.C.Y., S.K.A.), Boston Children's Hospital, Harvard Medical School, MA.
| | - Julian E Alecu
- From the Department of Neurology (D.E.-F., J.E.A., M.Z., G.G., C.J., A.D., A.S., M.S.), and Division of Neuroradiology, Department of Radiology (S.P.P., E.Y.), The Manton Center for Orphan Disease Research (D.E.-F., R.C.Y., S.K.A.), Rosamund Stone Zander Translational Neuroscience Center (M.S.), and Division of Genetics and Genomics (D.E.-F., R.C.Y., S.K.A.), Boston Children's Hospital, Harvard Medical School, MA
| | - Marvin Ziegler
- From the Department of Neurology (D.E.-F., J.E.A., M.Z., G.G., C.J., A.D., A.S., M.S.), and Division of Neuroradiology, Department of Radiology (S.P.P., E.Y.), The Manton Center for Orphan Disease Research (D.E.-F., R.C.Y., S.K.A.), Rosamund Stone Zander Translational Neuroscience Center (M.S.), and Division of Genetics and Genomics (D.E.-F., R.C.Y., S.K.A.), Boston Children's Hospital, Harvard Medical School, MA
| | - Gregory Geisel
- From the Department of Neurology (D.E.-F., J.E.A., M.Z., G.G., C.J., A.D., A.S., M.S.), and Division of Neuroradiology, Department of Radiology (S.P.P., E.Y.), The Manton Center for Orphan Disease Research (D.E.-F., R.C.Y., S.K.A.), Rosamund Stone Zander Translational Neuroscience Center (M.S.), and Division of Genetics and Genomics (D.E.-F., R.C.Y., S.K.A.), Boston Children's Hospital, Harvard Medical School, MA
| | - Catherine Jordan
- From the Department of Neurology (D.E.-F., J.E.A., M.Z., G.G., C.J., A.D., A.S., M.S.), and Division of Neuroradiology, Department of Radiology (S.P.P., E.Y.), The Manton Center for Orphan Disease Research (D.E.-F., R.C.Y., S.K.A.), Rosamund Stone Zander Translational Neuroscience Center (M.S.), and Division of Genetics and Genomics (D.E.-F., R.C.Y., S.K.A.), Boston Children's Hospital, Harvard Medical School, MA
| | - Angelica D'Amore
- From the Department of Neurology (D.E.-F., J.E.A., M.Z., G.G., C.J., A.D., A.S., M.S.), and Division of Neuroradiology, Department of Radiology (S.P.P., E.Y.), The Manton Center for Orphan Disease Research (D.E.-F., R.C.Y., S.K.A.), Rosamund Stone Zander Translational Neuroscience Center (M.S.), and Division of Genetics and Genomics (D.E.-F., R.C.Y., S.K.A.), Boston Children's Hospital, Harvard Medical School, MA
| | - Rebecca C Yeh
- From the Department of Neurology (D.E.-F., J.E.A., M.Z., G.G., C.J., A.D., A.S., M.S.), and Division of Neuroradiology, Department of Radiology (S.P.P., E.Y.), The Manton Center for Orphan Disease Research (D.E.-F., R.C.Y., S.K.A.), Rosamund Stone Zander Translational Neuroscience Center (M.S.), and Division of Genetics and Genomics (D.E.-F., R.C.Y., S.K.A.), Boston Children's Hospital, Harvard Medical School, MA
| | - Shyam K Akula
- From the Department of Neurology (D.E.-F., J.E.A., M.Z., G.G., C.J., A.D., A.S., M.S.), and Division of Neuroradiology, Department of Radiology (S.P.P., E.Y.), The Manton Center for Orphan Disease Research (D.E.-F., R.C.Y., S.K.A.), Rosamund Stone Zander Translational Neuroscience Center (M.S.), and Division of Genetics and Genomics (D.E.-F., R.C.Y., S.K.A.), Boston Children's Hospital, Harvard Medical School, MA
| | - Afshin Saffari
- From the Department of Neurology (D.E.-F., J.E.A., M.Z., G.G., C.J., A.D., A.S., M.S.), and Division of Neuroradiology, Department of Radiology (S.P.P., E.Y.), The Manton Center for Orphan Disease Research (D.E.-F., R.C.Y., S.K.A.), Rosamund Stone Zander Translational Neuroscience Center (M.S.), and Division of Genetics and Genomics (D.E.-F., R.C.Y., S.K.A.), Boston Children's Hospital, Harvard Medical School, MA
| | - Sanjay P Prabhu
- From the Department of Neurology (D.E.-F., J.E.A., M.Z., G.G., C.J., A.D., A.S., M.S.), and Division of Neuroradiology, Department of Radiology (S.P.P., E.Y.), The Manton Center for Orphan Disease Research (D.E.-F., R.C.Y., S.K.A.), Rosamund Stone Zander Translational Neuroscience Center (M.S.), and Division of Genetics and Genomics (D.E.-F., R.C.Y., S.K.A.), Boston Children's Hospital, Harvard Medical School, MA
| | - Mustafa Sahin
- From the Department of Neurology (D.E.-F., J.E.A., M.Z., G.G., C.J., A.D., A.S., M.S.), and Division of Neuroradiology, Department of Radiology (S.P.P., E.Y.), The Manton Center for Orphan Disease Research (D.E.-F., R.C.Y., S.K.A.), Rosamund Stone Zander Translational Neuroscience Center (M.S.), and Division of Genetics and Genomics (D.E.-F., R.C.Y., S.K.A.), Boston Children's Hospital, Harvard Medical School, MA
| | - Edward Yang
- From the Department of Neurology (D.E.-F., J.E.A., M.Z., G.G., C.J., A.D., A.S., M.S.), and Division of Neuroradiology, Department of Radiology (S.P.P., E.Y.), The Manton Center for Orphan Disease Research (D.E.-F., R.C.Y., S.K.A.), Rosamund Stone Zander Translational Neuroscience Center (M.S.), and Division of Genetics and Genomics (D.E.-F., R.C.Y., S.K.A.), Boston Children's Hospital, Harvard Medical School, MA
| | | |
Collapse
|
21
|
Ebrahimi-Fakhari D, Alecu JE, Brechmann B, Ziegler M, Eberhardt K, Jumo H, D’Amore A, Habibzadeh P, Faghihi MA, De Bleecker JL, Vuillaumier-Barrot S, Auvin S, Santorelli FM, Neuser S, Popp B, Yang E, Barrett L, Davies AK, Saffari A, Hirst J, Sahin M. High-throughput imaging of ATG9A distribution as a diagnostic functional assay for adaptor protein complex 4-associated hereditary spastic paraplegia. Brain Commun 2021; 3:fcab221. [PMID: 34729478 PMCID: PMC8557665 DOI: 10.1093/braincomms/fcab221] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 01/09/2023] Open
Abstract
Adaptor protein complex 4-associated hereditary spastic paraplegia is caused by biallelic loss-of-function variants in AP4B1, AP4M1, AP4E1 or AP4S1, which constitute the four subunits of this obligate complex. While the diagnosis of adaptor protein complex 4-associated hereditary spastic paraplegia relies on molecular testing, the interpretation of novel missense variants remains challenging. Here, we address this diagnostic gap by using patient-derived fibroblasts to establish a functional assay that measures the subcellular localization of ATG9A, a transmembrane protein that is sorted by adaptor protein complex 4. Using automated high-throughput microscopy, we determine the ratio of the ATG9A fluorescence in the trans-Golgi-network versus cytoplasm and ascertain that this metric meets standards for screening assays (Z'-factor robust >0.3, strictly standardized mean difference >3). The 'ATG9A ratio' is increased in fibroblasts of 18 well-characterized adaptor protein complex 4-associated hereditary spastic paraplegia patients [mean: 1.54 ± 0.13 versus 1.21 ± 0.05 (standard deviation) in controls] and receiver-operating characteristic analysis demonstrates robust diagnostic power (area under the curve: 0.85, 95% confidence interval: 0.849-0.852). Using fibroblasts from two individuals with atypical clinical features and novel biallelic missense variants of unknown significance in AP4B1, we show that our assay can reliably detect adaptor protein complex 4 function. Our findings establish the 'ATG9A ratio' as a diagnostic marker of adaptor protein complex 4-associated hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Darius Ebrahimi-Fakhari
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Julian E Alecu
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Barbara Brechmann
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marvin Ziegler
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Ruprecht-Karls University Heidelberg, Medical School, 69120 Heidelberg, Germany
| | - Kathrin Eberhardt
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hellen Jumo
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Angelica D’Amore
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Parham Habibzadeh
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, 71347 Shiraz, Iran
| | - Mohammad Ali Faghihi
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
| | - Jan L De Bleecker
- Department of Neurology, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Stéphane Auvin
- Pediatric Neurology Department, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Filippo M Santorelli
- Department of Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Sonja Neuser
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Edward Yang
- Division of Neuroradiology, Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lee Barrett
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alexandra K Davies
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Afshin Saffari
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Mustafa Sahin
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
22
|
Efficient Neuroprotective Rescue of Sacsin-Related Disease Phenotypes in Zebrafish. Int J Mol Sci 2021; 22:ijms22168401. [PMID: 34445111 PMCID: PMC8395086 DOI: 10.3390/ijms22168401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a multisystem hereditary ataxia associated with mutations in SACS, which encodes sacsin, a protein of still only partially understood function. Although mouse models of ARSACS mimic largely the disease progression seen in humans, their use in the validation of effective therapies has not yet been proposed. Recently, the teleost Danio rerio has attracted increasing attention as a vertebrate model that allows rapid and economical screening, of candidate molecules, and thus combines the advantages of whole-organism phenotypic assays and in vitro high-throughput screening assays. Through CRISPR/Cas9-based mutagenesis, we generated and characterized a zebrafish sacs-null mutant line that replicates the main features of ARSACS. The sacs-null fish showed motor impairment, hindbrain atrophy, mitochondrial dysfunction, and reactive oxygen species accumulation. As proof of principle for using these mutant fish in high-throughput screening studies, we showed that both acetyl-DL-leucine and tauroursodeoxycholic acid improved locomotor and biochemical phenotypes in sacs−/− larvae treated with these neuroprotective agents, by mediating significant rescue of the molecular functions altered by sacsin loss. Taken together, the evidence here reported shows the zebrafish to be a valuable model organism for the identification of novel molecular mechanisms and for efficient and rapid in vivo optimization and screening of potential therapeutic compounds. These findings may pave the way for new interventions targeting the earliest phases of Purkinje cell degeneration in ARSACS.
Collapse
|