1
|
Molina Galindo LS, Gonzalez-Escamilla G, Fleischer V, Grotegerd D, Meinert S, Ciolac D, Person M, Stein F, Brosch K, Nenadić I, Alexander N, Kircher T, Hahn T, Winter Y, Othman AE, Bittner S, Zipp F, Dannlowski U, Groppa S. Concurrent inflammation-related brain reorganization in multiple sclerosis and depression. Brain Behav Immun 2024; 119:978-988. [PMID: 38761819 DOI: 10.1016/j.bbi.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Neuroinflammation affects brain tissue integrity in multiple sclerosis (MS) and may have a role in major depressive disorder (MDD). Whether advanced magnetic resonance imaging characteristics of the gray-to-white matter border serve as proxy of neuroinflammatory activity in MDD and MS remain unknown. METHODS We included 684 participants (132 MDD patients with recurrent depressive episodes (RDE), 70 MDD patients with a single depressive episode (SDE), 222 MS patients without depressive symptoms (nMS), 58 MS patients with depressive symptoms (dMS), and 202 healthy controls (HC)). 3 T-T1w MRI-derived gray-to-white matter contrast (GWc) was used to reconstruct and characterize connectivity alterations of GWc-covariance networks by means of modularity, clustering coefficient, and degree. A cross-validated support vector machine was used to test the ability of GWc to stratify groups according to their depression symptoms, measured with BDI, at the single-subject level in MS and MDD independently. FINDINGS MS and MDD patients showed increased modularity (ANOVA partial-η2 = 0.3) and clustering (partial-η2 = 0.1) compared to HC. In the subgroups, a linear trend analysis attested a gradient of modularity increases in the form: HC, dMS, nMS, SDE, and RDE (ANOVA partial-η2 = 0.28, p < 0.001) while this trend was less evident for clustering coefficient. Reduced morphological integrity (GWc) was seen in patients with increased depressive symptoms (partial-η2 = 0.42, P < 0.001) and was associated with depression scores across patient groups (r = -0.2, P < 0.001). Depressive symptoms in MS were robustly classified (88 %). CONCLUSIONS Similar structural network alterations in MDD and MS exist, suggesting possible common inflammatory events like demyelination, neuroinflammation that are caught by GWc analyses. These alterations may vary depending on the severity of symptoms and in the case of MS may elucidate the occurrence of comorbid depression.
Collapse
Affiliation(s)
- Lara S Molina Galindo
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dumitru Ciolac
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maren Person
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Frederike Stein
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Katharina Brosch
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Igor Nenadić
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Nina Alexander
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Tilo Kircher
- Klinik für Psychiatrie und Psychotherapie, Philipps-Universität Marburg, Marburg, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Yaroslav Winter
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Ahmed E Othman
- Department of Neuroradiology, Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
2
|
Fleischer V, Gonzalez-Escamilla G, Pareto D, Rovira A, Sastre-Garriga J, Sowa P, Høgestøl EA, Harbo HF, Bellenberg B, Lukas C, Ruggieri S, Gasperini C, Uher T, Vaneckova M, Bittner S, Othman AE, Collorone S, Toosy AT, Meuth SG, Zipp F, Barkhof F, Ciccarelli O, Groppa S. Prognostic value of single-subject grey matter networks in early multiple sclerosis. Brain 2024; 147:135-146. [PMID: 37642541 PMCID: PMC10766234 DOI: 10.1093/brain/awad288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
The identification of prognostic markers in early multiple sclerosis (MS) is challenging and requires reliable measures that robustly predict future disease trajectories. Ideally, such measures should make inferences at the individual level to inform clinical decisions. This study investigated the prognostic value of longitudinal structural networks to predict 5-year Expanded Disability Status Scale (EDSS) progression in patients with relapsing-remitting MS (RRMS). We hypothesized that network measures, derived from MRI, outperform conventional MRI measurements at identifying patients at risk of developing disability progression. This longitudinal, multicentre study within the Magnetic Resonance Imaging in MS (MAGNIMS) network included 406 patients with RRMS (mean age = 35.7 ± 9.1 years) followed up for 5 years (mean follow-up = 5.0 ± 0.6 years). EDSS was determined to track disability accumulation. A group of 153 healthy subjects (mean age = 35.0 ± 10.1 years) with longitudinal MRI served as controls. All subjects underwent MRI at baseline and again 1 year after baseline. Grey matter atrophy over 1 year and white matter lesion load were determined. A single-subject brain network was reconstructed from T1-weighted scans based on grey matter atrophy measures derived from a statistical parameter mapping-based segmentation pipeline. Key topological measures, including network degree, global efficiency and transitivity, were calculated at single-subject level to quantify network properties related to EDSS progression. Areas under receiver operator characteristic (ROC) curves were constructed for grey matter atrophy and white matter lesion load, and the network measures and comparisons between ROC curves were conducted. The applied network analyses differentiated patients with RRMS who experience EDSS progression over 5 years through lower values for network degree [H(2) = 30.0, P < 0.001] and global efficiency [H(2) = 31.3, P < 0.001] from healthy controls but also from patients without progression. For transitivity, the comparisons showed no difference between the groups [H(2) = 1.5, P = 0.474]. Most notably, changes in network degree and global efficiency were detected independent of disease activity in the first year. The described network reorganization in patients experiencing EDSS progression was evident in the absence of grey matter atrophy. Network degree and global efficiency measurements demonstrated superiority of network measures in the ROC analyses over grey matter atrophy and white matter lesion load in predicting EDSS worsening (all P-values < 0.05). Our findings provide evidence that grey matter network reorganization over 1 year discloses relevant information about subsequent clinical worsening in RRMS. Early grey matter restructuring towards lower network efficiency predicts disability accumulation and outperforms conventional MRI predictors.
Collapse
Affiliation(s)
- Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Alex Rovira
- Section of Neuroradiology, Department of Radiology (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Jaume Sastre-Garriga
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Piotr Sowa
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Einar A Høgestøl
- Institute of Clinical Medicine, University of Oslo, NO-0316 Oslo, Norway
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Hanne F Harbo
- Institute of Clinical Medicine, University of Oslo, NO-0316 Oslo, Norway
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Barbara Bellenberg
- Institute of Neuroradiology, St Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Carsten Lukas
- Institute of Neuroradiology, St Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Serena Ruggieri
- Department of Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Tomas Uher
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Ahmed E Othman
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Sara Collorone
- Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London, WC1E 6BT London, UK
| | - Ahmed T Toosy
- Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London, WC1E 6BT London, UK
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Frederik Barkhof
- Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London, WC1E 6BT London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, 1100 DD Amsterdam, Netherlands
| | - Olga Ciccarelli
- Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Science, University College of London, WC1E 6BT London, UK
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
3
|
Abdolalizadeh A, Ohadi MAD, Ershadi ASB, Aarabi MH. Graph theoretical approach to brain remodeling in multiple sclerosis. Netw Neurosci 2023; 7:148-159. [PMID: 37334009 PMCID: PMC10270718 DOI: 10.1162/netn_a_00276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/05/2022] [Indexed: 03/21/2024] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disorder damaging structural connectivity. Natural remodeling processes of the nervous system can, to some extent, restore the damage caused. However, there is a lack of biomarkers to evaluate remodeling in MS. Our objective is to evaluate graph theory metrics (especially modularity) as a biomarker of remodeling and cognition in MS. We recruited 60 relapsing-remitting MS and 26 healthy controls. Structural and diffusion MRI, plus cognitive and disability evaluations, were done. We calculated modularity and global efficiency from the tractography-derived connectivity matrices. Association of graph metrics with T2 lesion load, cognition, and disability was evaluated using general linear models adjusting for age, gender, and disease duration wherever applicable. We showed that MS subjects had higher modularity and lower global efficiency compared with controls. In the MS group, modularity was inversely associated with cognitive performance but positively associated with T2 lesion load. Our results indicate that modularity increase is due to the disruption of intermodular connections in MS because of the lesions, with no improvement or preserving of cognitive functions.
Collapse
Affiliation(s)
- AmirHussein Abdolalizadeh
- Students’ Scientific Research Program, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Dabbagh Ohadi
- Students’ Scientific Research Program, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Sasan Bayani Ershadi
- Students’ Scientific Research Program, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience, Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Fazlollahi A, Lee S, Coleman F, McCann E, Cloos MA, Bourgeat P, Nestor PJ. Increased Resolution of Structural MRI at 3T Improves Estimation of Regional Cortical Degeneration in Individual Dementia Patients Using Surface Thickness Maps. J Alzheimers Dis 2023; 95:1253-1262. [PMID: 37661879 DOI: 10.3233/jad-230030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Objective measurement of regional cortical atrophy in individual patients would be a highly desirable adjunct for diagnosis of degenerative dementias. OBJECTIVE We hypothesized that increasing the resolution of magnetic resonance scans would improve the sensitivity of cortical atrophy detection for individual patients. METHODS 46 participants including 8 semantic-variant primary progressive aphasia (svPPA), seven posterior cortical atrophy (PCA), and 31 cognitively unimpaired participants underwent clinical assessment and 3.0T brain scans. SvPPA and PCA were chosen because there is overwhelming prior knowledge of the expected atrophy pattern. Two sets of T1-weighted images with 0.8 mm3 (HighRes) and conventional 1.0 mm3 (ConvRes) resolution were acquired. The cortical ribbon was segmented using FreeSurfer software to obtain surface-based thickness maps. Inter-sequence performance was assessed in terms of cortical thickness and sub-cortical volume reproducibility, signal-to-noise and contrast-to-noise ratios. For clinical cases, diagnostic effect size (Cohen's d) and lesion distribution (z-score and t-value maps) were compared between HighRes and ConvRes scans. RESULTS The HighRes scans produced higher image quality scores at 90 seconds extra scan time. The effect size of cortical thickness differences between patients and cognitively unimpaired participants was 15-20% larger for HighRes scans. HighRes scans showed more robust patterns of atrophy in expected regions in each and every individual patient. CONCLUSIONS HighRes T1-weighted scans showed superior precision for identifying the severity of cortical atrophy in individual patients, offering a proof-of-concept for clinical translation. Studying svPPA and PCA, two syndromes with well-defined focal atrophy patterns, offers a method to clinically validate and contrast automated algorithms.
Collapse
Affiliation(s)
- Amir Fazlollahi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Soohyun Lee
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Felicia Coleman
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Emily McCann
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Martijn A Cloos
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology (CIBIT), University of Queensland, Brisbane, Queensland, Australia
| | - Pierrick Bourgeat
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | - Peter J Nestor
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Mater Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Abuaf AF, Bunting SR, Klein S, Carroll T, Carpenter-Thompson J, Javed A, Cipriani V. Analysis of the extent of limbic system changes in multiple sclerosis using FreeSurfer and voxel-based morphometry approaches. PLoS One 2022; 17:e0274778. [PMID: 36137122 PMCID: PMC9499213 DOI: 10.1371/journal.pone.0274778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background and purpose The limbic brain is involved in diverse cognitive, emotional, and autonomic functions. Injury of the various parts of the limbic system have been correlated with clinical deficits in MS. The purpose of this study was to comprehensively examine different regions of the subcortical limbic system to assess the extent of damage within this entire system as it may be pertinent in correlating with specific aspects of cognitive and behavioral dysfunction in MS by using a fully automated, unbiased segmentation approach. Methods Sixty-seven subjects were included in this study, including 52 with multiple sclerosis (MS) and 15 healthy controls. Only patients with stable MS disease, without any relapses, MRI activity, or disability progression were included. Subcortical limbic system segmentation was performed using the FreeSurfer pipeline ScLimbic, which provides volumes for fornix, mammillary bodies, hypothalamus, septal nuclei, nucleus accumbens, and basal forebrain. Hippocampus and anterior thalamic nuclei were added as additional components of the limbic circuitry, also segmented through FreeSurfer. Whole limbic region mask was generated by combining these structures and used for Voxel-based morphometry (VBM) analysis. Results The mean [95% confidence interval] of the total limbic system volume was lower (0.22% [0.21–0.23]) in MS compared to healthy controls (0.27%, [0.25–0.29], p < .001). Pairwise comparisons of individual limbic regions between MS and controls was significant in the nucleus accumbens (0.046%, [0.043–0.050] vs. 0.059%, [0.051–0.066], p = .005), hypothalamus (0.062%, [0.059–0.065] vs. 0.074%, [0.068–0.081], p = .001), basal forebrain (0.038%, [0.036–0.040] vs. 0.047%, [0.042–0.051], p = .001), hippocampus (0.47%, [0.45–0.49] vs. 0.53%, [0.49–0.57], p = .004), and anterior thalamus (0.077%, [0.072–0.082] vs. 0.093%, [0.084–0.10], p = .001) after Bonferroni correction. Volume of several limbic regions was significantly correlated with T2 lesion burden and brain parenchymal fraction (BPF). Multiple regression model showed minimal influence of BPF on limbic brain volume and no influence of other demographic and disease state variables. VBM analysis showed cluster differences in the fornix and anterior thalamic nuclei at threshold p < 0.05 after adjusting for covariates but the results were insignificant after family-wise error corrections. Conclusions The results show evidence that brain volume loss is fairly extensive in the limbic brain. Given the significance of the limbic system in many disease states including MS, such volumetric analyses can be expanded to studying cognitive and emotional disturbances in larger clinical trials. FreeSurfer ScLimbic pipeline provided an efficient and reliable methodology for examining many of the subcortical structures related to the limbic brain.
Collapse
Affiliation(s)
- Amanda Frisosky Abuaf
- Department of Neurology, The University of Wisconsin, Madison, WI, United States of America
| | - Samuel R. Bunting
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, United States of America
| | - Sara Klein
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| | - Timothy Carroll
- Department of Radiology, The University of Chicago, Chicago, IL, United States of America
| | | | - Adil Javed
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
- * E-mail:
| | - Veronica Cipriani
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
6
|
Ciolac D, Gonzalez-Escamilla G, Winter Y, Melzer N, Luessi F, Radetz A, Fleischer V, Groppa SA, Kirsch M, Bittner S, Zipp F, Muthuraman M, Meuth SG, Grothe M, Groppa S. Altered grey matter integrity and network vulnerability relate to epilepsy occurrence in patients with multiple sclerosis. Eur J Neurol 2022; 29:2309-2320. [PMID: 35582936 DOI: 10.1111/ene.15405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND To investigate the relevance of compartmentalized grey matter (GM) pathology and network reorganization in MS patients with concomitant epilepsy. METHODS From 3T MRI scans of 30 MS patients with epilepsy (MSE; age 41±15 years, 21 females, disease duration 8±6 years, median Expanded Disability Status Scale (EDSS) 3), 60 MS patients without epilepsy (MS; age 41±12 years, 35 females, disease duration 6±4 years, EDSS 2), and 60 healthy subjects (HS; age 40±13 years, 27 females) regional volumes of GM lesions and of cortical, subcortical, and hippocampal structures were quantified. Network topology and vulnerability were modeled within the graph theoretical framework. The receiver operating characteristic (ROC) analysis was applied to assess the accuracy of GM pathology measures to discriminate between MSE and MS patients. RESULTS Higher lesion volumes within the hippocampus, mesiotemporal cortex, and amygdala were detected in MSE compared to MS (all p<0.05). MSE displayed lower cortical volumes mainly in temporal and parietal areas compared to MS and HS (all p<0.05). Lower volumes of hippocampal tail and presubiculum were identified in both MSE and MS patients compared to HS (all p<0.05). Network topology in MSE was characterized by higher transitivity and assortativity, and higher vulnerability compared to MS and HS (all p<0.05). Hippocampal lesion volume yielded the highest accuracy (area under the ROC curve 0.80 [0.67-0.91]) in discriminating between MSE and MS patients. CONCLUSIONS High lesion load, altered integrity of mesiotemporal GM structures, and network reorganization are associated with a greater propensity of epilepsy occurrence in MS.
Collapse
Affiliation(s)
- Dumitru Ciolac
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Yaroslav Winter
- Mainz Comprehensive Epilepsy and Sleep Medicine Center, Department of Neurology, Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Neurology, Philipps-University, Marburg, Germany
| | - Nico Melzer
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Angela Radetz
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stanislav A Groppa
- Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Michael Kirsch
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine of Greifswald, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | - Matthias Grothe
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
7
|
Groppa S, Gonzalez-Escamilla G, Eshaghi A, Meuth SG, Ciccarelli O. Linking immune-mediated damage to neurodegeneration in multiple sclerosis: could network-based MRI help? Brain Commun 2021; 3:fcab237. [PMID: 34729480 PMCID: PMC8557667 DOI: 10.1093/braincomms/fcab237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammatory demyelination characterizes the initial stages of multiple sclerosis, while progressive axonal and neuronal loss are coexisting and significantly contribute to the long-term physical and cognitive impairment. There is an unmet need for a conceptual shift from a dualistic view of multiple sclerosis pathology, involving either inflammatory demyelination or neurodegeneration, to integrative dynamic models of brain reorganization, where, glia-neuron interactions, synaptic alterations and grey matter pathology are longitudinally envisaged at the whole-brain level. Functional and structural MRI can delineate network hallmarks for relapses, remissions or disease progression, which can be linked to the pathophysiology behind inflammatory attacks, repair and neurodegeneration. Here, we aim to unify recent findings of grey matter circuits dynamics in multiple sclerosis within the framework of molecular and pathophysiological hallmarks combined with disease-related network reorganization, while highlighting advances from animal models (in vivo and ex vivo) and human clinical data (imaging and histological). We propose that MRI-based brain networks characterization is essential for better delineating ongoing pathology and elaboration of particular mechanisms that may serve for accurate modelling and prediction of disease courses throughout disease stages.
Collapse
Affiliation(s)
- Sergiu Groppa
- Imaging and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Gabriel Gonzalez-Escamilla
- Imaging and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Arman Eshaghi
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1E 6BT, UK.,Department of Computer Science, Centre for Medical Image Computing (CMIC), University College London, London WC1E 6BT, UK
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Olga Ciccarelli
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
8
|
Ciolac D, Gonzalez-Escamilla G, Radetz A, Fleischer V, Person M, Johnen A, Landmeyer NC, Krämer J, Muthuraman M, Meuth SG, Groppa S. Sex-specific signatures of intrinsic hippocampal networks and regional integrity underlying cognitive status in multiple sclerosis. Brain Commun 2021; 3:fcab198. [PMID: 34514402 PMCID: PMC8417841 DOI: 10.1093/braincomms/fcab198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/27/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
The hippocampus is an anatomically compartmentalized structure embedded in highly wired networks that are essential for cognitive functions. The hippocampal vulnerability has been postulated in acute and chronic neuroinflammation in multiple sclerosis, while the patterns of occurring inflammation, neurodegeneration or compensation have not yet been described. Besides focal damage to hippocampal tissue, network disruption is an important contributor to cognitive decline in multiple sclerosis patients. We postulate sex-specific trajectories in hippocampal network reorganization and regional integrity and address their relationship to markers of neuroinflammation, cognitive/memory performance and clinical severity. In a large cohort of multiple sclerosis patients (n = 476; 337 females, age 35 ± 10 years, disease duration 16 ± 14 months) and healthy subjects (n = 110, 54 females; age 34 ± 15 years), we utilized MRI at baseline and at 2-year follow-up to quantify regional hippocampal volumetry and reconstruct single-subject hippocampal networks. Through graph analytical tools we assessed the clustered topology of the hippocampal networks. Mixed-effects analyses served to model sex-based differences in hippocampal network and subfield integrity between multiple sclerosis patients and healthy subjects at both time points and longitudinally. Afterwards, hippocampal network and subfield integrity were related to clinical and radiological variables in dependency of sex attribution. We found a more clustered network architecture in both female and male patients compared to their healthy counterparts. At both time points, female patients displayed a more clustered network topology in comparison to male patients. Over time, multiple sclerosis patients developed an even more clustered network architecture, though with a greater magnitude in females. We detected reduced regional volumes in most of the addressed hippocampal subfields in both female and male patients compared to healthy subjects. Compared to male patients, females displayed lower volumes of para- and presubiculum but higher volumes of the molecular layer. Longitudinally, volumetric alterations were more pronounced in female patients, which showed a more extensive regional tissue loss. Despite a comparable cognitive/memory performance between female and male patients over the follow-up period, we identified a strong interrelation between hippocampal network properties and cognitive/memory performance only in female patients. Our findings evidence a more clustered hippocampal network topology in female patients with a more extensive subfield volume loss over time. A stronger relation between cognitive/memory performance and the network topology in female patients suggests greater entrainment of the brain’s reserve. These results may serve to adapt sex-targeted neuropsychological interventions.
Collapse
Affiliation(s)
- Dumitru Ciolac
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany.,Department of Neurology, Institute of Emergency Medicine, Chisinau 2004, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau 2004, Moldova
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Angela Radetz
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Maren Person
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Andreas Johnen
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Nils C Landmeyer
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, Münster 48149, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| |
Collapse
|
9
|
Cattarinussi G, Delvecchio G, Maggioni E, Bressi C, Brambilla P. Ultra-high field imaging in Major Depressive Disorder: a review of structural and functional studies. J Affect Disord 2021; 290:65-73. [PMID: 33993082 DOI: 10.1016/j.jad.2021.04.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe and pervasive psychiatric condition with a lifetime prevalence of 15-25%. Numerous Magnetic Resonance Imaging (MRI) studies employing scans at field strengths of 1.5T or 3T have been carried out in the last decades, providing an unprecedented insight into the neural correlates of MDD. However, in recent years, MRI technology has largely progressed and the use of scans at ultra-high field (≥ 7T) has improved the sensitivity and the resolution of MR images. In this context, with this review we aim to summarize evidence of structural and functional brain mechanisms underlying MDD obtained with ultra-high field MRI. METHODS We conducted a search on PubMed, Scopus and Web of Science of neuroimaging studies on MDD patients, which employed ultra-high field MRI. We detected six structural MRI studies, two Diffusion Tensor Imaging (DTI) studies and five functional MRI (fMRI) studies. RESULTS Overall, the MRI and DTI studies showed volumetric and structural connectivity alterations in the hippocampus and, to a lesser extent, in the amygdala. In contrast, more heterogeneous results were reported by fMRI studies, which, though, described functional abnormalities in the cingulate cortex, thalamus and several other brain areas. LIMITATIONS The small sample size and the heterogeneity in patients' samples, processing and study design limit the conclusion of the present review. CONCLUSIONS Studies employing scans at ultra-high magnetic field may provide a useful contribution to the mixed body of literature on MDD. This preliminary but promising evidence confirms the importance of performing ultra-high field MRI investigations in order to detect and better characterize subtle brain abnormalities in MDD.
Collapse
Affiliation(s)
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy.
| | - Eleonora Maggioni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cinzia Bressi
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, 20122 Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
10
|
Gonzalez-Escamilla G, Groppa S. 7 Tesla MRI will soon be helpful to guide clinical practice in multiple sclerosis centres - No. Mult Scler 2021; 27:362-363. [PMID: 33404369 DOI: 10.1177/1352458520969662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gabriel Gonzalez-Escamilla
- Focus Program Translational Neuroscience (FTN) and Rhine-Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Focus Program Translational Neuroscience (FTN) and Rhine-Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|