1
|
Salomon-Zimri S, Kerem N, Linares GR, Russek-Blum N, Ichida JK, Tracik F. Elucidating the Synergistic Effect of the PrimeC Combination for Amyotrophic Lateral Sclerosis in Human Induced Pluripotent Stem Cell-Derived Motor Neurons and Mouse Models. Pharmaceuticals (Basel) 2025; 18:524. [PMID: 40283960 PMCID: PMC12030000 DOI: 10.3390/ph18040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterized by the involvement of multiple pathways and mechanisms. The complexity of its pathophysiology is reflected in the diverse hypotheses relating to its underlying causes. Given this intricate interplay of processes, a combination therapy approach offers a promising strategy. Combination therapies have demonstrated significant success in treating complex diseases, where they aim to achieve synergistic therapeutic effects and reduce drug dosage. PrimeC is an oral combination treatment composed of a patented novel formulation consisting of specific and unique doses of two well-characterized drugs (ciprofloxacin and celecoxib). It aims to synergistically inhibit the progression of ALS by addressing key elements of its pathophysiology. Objectives: Demonstrating the synergistic effect of the PrimeC combination compared to each of its individual components, celecoxib and ciprofloxacin, and assessing its ability to improve the drug concentration profile and efficacy. Methods: The efficacy of the PrimeC combination was assessed in a survival assay using human induced pluripotent stem cell (iPSC)-derived motor neurons. Additionally, a drug profiling study was conducted, measuring drug levels in the brain and serum of C57BL mice treated with a single compound versus the combination. Results: Motor neurons modeling ALS treated with the PrimeC combination exhibited better survival rates compared to treatment with either individual compound alone. The enhanced efficacy of the combination was further supported by a drug concentration profiling study in rodents, demonstrating that the PrimeC combination resulted in increased ciprofloxacin concentrations in both brain tissue and serum-highlighting the optimized interaction and synergistic potential of its two comprising agents. Conclusions: Our findings support the potential of combination therapy as an effective strategy for ALS treatment. Specifically, the PrimeC combination demonstrated promising therapeutic effects, providing a strong rationale for its ongoing development as a targeted treatment for ALS.
Collapse
Affiliation(s)
- Shiran Salomon-Zimri
- NeuroSense Therapeutics, Ltd., Ha-Menofim 11, Herzliya 4672562, Israel; (N.K.); (N.R.-B.); (F.T.)
| | - Nitai Kerem
- NeuroSense Therapeutics, Ltd., Ha-Menofim 11, Herzliya 4672562, Israel; (N.K.); (N.R.-B.); (F.T.)
| | - Gabriel R. Linares
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.R.L.); (J.K.I.)
| | - Niva Russek-Blum
- NeuroSense Therapeutics, Ltd., Ha-Menofim 11, Herzliya 4672562, Israel; (N.K.); (N.R.-B.); (F.T.)
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (G.R.L.); (J.K.I.)
| | - Ferenc Tracik
- NeuroSense Therapeutics, Ltd., Ha-Menofim 11, Herzliya 4672562, Israel; (N.K.); (N.R.-B.); (F.T.)
| |
Collapse
|
2
|
Locskai LF, Gill T, Tan SAW, Burton AH, Alyenbaawi H, Burton EA, Allison WT. A larval zebrafish model of traumatic brain injury: optimizing the dose of neurotrauma for discovery of treatments and aetiology. Biol Open 2025; 14:bio060601. [PMID: 39936823 PMCID: PMC11849975 DOI: 10.1242/bio.060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 02/13/2025] Open
Abstract
Traumatic brain injuries (TBI) are diverse with heterogeneous injury pathologies, which creates challenges for the clinical treatment and prevention of secondary pathologies such as post-traumatic epilepsy and subsequent dementias. To develop pharmacological strategies that treat TBI and prevent complications, animal models must capture the spectrum of TBI severity to better understand pathophysiological events that occur during and after injury. To address such issues, we improved upon our recent larval zebrafish TBI paradigm emphasizing titrating to different injury levels. We observed coordination between an increase in injury level and clinically relevant injury phenotypes including post-traumatic seizures (PTS) and tau aggregation. This preclinical TBI model is simple to implement, allows dosing of injury levels to model diverse pathologies, and can be scaled to medium- or high-throughput screening.
Collapse
Affiliation(s)
- Laszlo F. Locskai
- Department of Biological Sciences, University of Alberta, Edmonton AB, T6G 2E9, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton AB, T6G 2M8, Canada
| | - Taylor Gill
- Department of Biological Sciences, University of Alberta, Edmonton AB, T6G 2E9, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton AB, T6G 2M8, Canada
| | - Samantha A. W. Tan
- Department of Biological Sciences, University of Alberta, Edmonton AB, T6G 2E9, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton AB, T6G 2M8, Canada
| | - Alexander H. Burton
- Departments of Chemical and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hadeel Alyenbaawi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Edward A. Burton
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Geriatric Research, Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA 15213, USA
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton AB, T6G 2E9, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton AB, T6G 2M8, Canada
- Department of Medical Genetics, University of Alberta, Edmonton AB, T6G 2H7, Canada
| |
Collapse
|
3
|
Garg V, Geurten BRH. Diving deep: zebrafish models in motor neuron degeneration research. Front Neurosci 2024; 18:1424025. [PMID: 38966756 PMCID: PMC11222423 DOI: 10.3389/fnins.2024.1424025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
In the dynamic landscape of biomedical science, the pursuit of effective treatments for motor neuron disorders like hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) remains a key priority. Central to this endeavor is the development of robust animal models, with the zebrafish emerging as a prime candidate. Exhibiting embryonic transparency, a swift life cycle, and significant genetic and neuroanatomical congruencies with humans, zebrafish offer substantial potential for research. Despite the difference in locomotion-zebrafish undulate while humans use limbs, the zebrafish presents relevant phenotypic parallels to human motor control disorders, providing valuable insights into neurodegenerative diseases. This review explores the zebrafish's inherent traits and how they facilitate profound insights into the complex behavioral and cellular phenotypes associated with these disorders. Furthermore, we examine recent advancements in high-throughput drug screening using the zebrafish model, a promising avenue for identifying therapeutically potent compounds.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Lower Saxony, Germany
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
4
|
Li X, Bedlack R. Evaluating emerging drugs in phase II & III for the treatment of amyotrophic lateral sclerosis. Expert Opin Emerg Drugs 2024; 29:93-102. [PMID: 38516735 DOI: 10.1080/14728214.2024.2333420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis is a rapidly progressive motor neuron disorder causing severe disability and premature death. Owing to the advances in uncovering ALS pathophysiology, efficient clinical trial design and research advocacy program, several disease-modifying drugs have been approved for treating ALS. Despite this progress, ALS remains a rapidly disabling and life shortening condition. There is a critical need for more effective therapies. AREAS COVERED Here, we reviewed the emerging ALS therapeutics undergoing phase II & III clinical trials. To identify the investigational drugs, we searched ALS and phase II/III trials that are active and recruiting or not yet recruiting on clinicaltrials.gov and Pharmaprojects database. EXPERT OPINION The current pipeline is larger and more diverse than ever, with drugs targeting potential genetic and retroviral causes of ALS and drugs targeting a wide array of downstream pathways, including RNA metabolism, protein aggregation, integrated stress response and neuroinflammation.We remain most excited about those that target direct causes of ALS, e.g. antisense oligonucleotides targeting causative genes. Drugs that eliminate abnormal protein aggregates are also up-and-coming. Eventually, because of the heterogeneity of ALS pathophysiology, biomarkers that determine which biological events are most important for an individual ALS patient are needed.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Neurology, Duke University, Durham, NC, USA
| | | |
Collapse
|
5
|
Youssef MAM, Mohamed TM, Bakry AA, El-Keiy MM. Synergistic effect of spermidine and ciprofloxacin against Alzheimer's disease in male rat via ferroptosis modulation. Int J Biol Macromol 2024; 263:130387. [PMID: 38401586 DOI: 10.1016/j.ijbiomac.2024.130387] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Alzheimer's disease (AD) is a prevalent form of neurodegenerative disease with a complex pathophysiology that remains not fully understood, and the exact mechanism of neurodegeneration is uncertain. Ferroptosis has been linked to the progression of degenerative diseases observed in AD models. The present study is designed to investigate the protective effects of spermidine, a potent antioxidant and iron chelator, and its synergistic interactions with ciprofloxacin, another iron chelator, in modulating ferroptosis and mitigating AD progression in rats. This study investigated AD-related biomarkers like neurotoxic amyloid beta (Aβ), arginase I, and serotonin. Spermidine demonstrated an anti-ferroptotic effect in the AD model, evident from the modulation of ferroptosis parameters such as hippocampus iron levels, reduced protein expression of transferrin receptor 1 (TFR1), and arachidonate 15-lipoxygenase (ALOX15). Additionally, the administration of spermidine led to a significant increase in protein expression of phosphorylated nuclear factor erythroid 2-related factor 2 (p-Nrf2) and upregulation of Cystine/glutamate transporter (SLC7A11) gene expression. Moreover, spermidine notably decreased p53 protein levels, acrolein, and gene expression of spermidine/spermine N1-acetyltransferase 1 (SAT1). Overall, our findings suggest that spermidine and/or ciprofloxacin may offer potential benefits against AD by modulating ferroptosis. Furthermore, spermidine enhanced the antioxidant efficacy of ciprofloxacin and reduced its toxic effects.
Collapse
Affiliation(s)
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Dept., Faculty of Science, Tanta University, Tanta, Egypt
| | - Azza A Bakry
- Food Technology Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Mai M El-Keiy
- Biochemistry Division, Chemistry Dept., Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Chaoul V, Dib EY, Bedran J, Khoury C, Shmoury O, Harb F, Soueid J. Assessing Drug Administration Techniques in Zebrafish Models of Neurological Disease. Int J Mol Sci 2023; 24:14898. [PMID: 37834345 PMCID: PMC10573323 DOI: 10.3390/ijms241914898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/15/2023] Open
Abstract
Neurological diseases, including neurodegenerative and neurodevelopmental disorders, affect nearly one in six of the world's population. The burden of the resulting deaths and disability is set to rise during the next few decades as a consequence of an aging population. To address this, zebrafish have become increasingly prominent as a model for studying human neurological diseases and exploring potential therapies. Zebrafish offer numerous benefits, such as genetic homology and brain similarities, complementing traditional mammalian models and serving as a valuable tool for genetic screening and drug discovery. In this comprehensive review, we highlight various drug delivery techniques and systems employed for therapeutic interventions of neurological diseases in zebrafish, and evaluate their suitability. We also discuss the challenges encountered during this process and present potential advancements in innovative techniques.
Collapse
Affiliation(s)
- Victoria Chaoul
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| | - Emanuel-Youssef Dib
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat P.O. Box 100, Lebanon; (E.-Y.D.); (C.K.)
| | - Joe Bedran
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| | - Chakib Khoury
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat P.O. Box 100, Lebanon; (E.-Y.D.); (C.K.)
| | - Omar Shmoury
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| | - Frédéric Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat P.O. Box 100, Lebanon; (E.-Y.D.); (C.K.)
| | - Jihane Soueid
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| |
Collapse
|
7
|
Bąk U, Krupa A. Challenges and Opportunities for Celecoxib Repurposing. Pharm Res 2023; 40:2329-2345. [PMID: 37552383 PMCID: PMC10661717 DOI: 10.1007/s11095-023-03571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Drug repositioning, also known as drug repurposing, reprofiling, or rediscovery, is considered to be one of the most promising strategies to accelerate the development of new original drug products. Multiple examples of successful rediscovery or therapeutic switching of old molecules that did not show clinical benefits or safety in initial trials encourage the following of the discovery of new therapeutic pathways for them. This review summarizes the efforts that have been made, mostly over the last decade, to identify new therapeutic targets for celecoxib. To achieve this goal, records gathered in MEDLINE PubMed and Scopus databases along with the registry of clinical trials by the US National Library of Medicine at the U.S. National Institutes of Health were explored. Since celecoxib is a non-steroidal anti-inflammatory drug that represents the class of selective COX-2 inhibitors (coxibs), its clinical potential in metronomic cancer therapy, the treatment of mental disorders, or infectious diseases has been discussed. In the end, the perspective of a formulator, facing various challenges related to unfavorable physicochemical properties of celecoxib upon the development of new oral dosage forms, long-acting injectables, and topical formulations, including the latest trends in the pharmaceutical technology, such as the application of mesoporous carriers, biodegradable microparticles, lipid-based nanosystems, or spanlastics, was presented.
Collapse
Affiliation(s)
- Urszula Bąk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland.
| |
Collapse
|
8
|
Liu Y. Zebrafish as a Model Organism for Studying Pathologic Mechanisms of Neurodegenerative Diseases and other Neural Disorders. Cell Mol Neurobiol 2023; 43:2603-2620. [PMID: 37004595 PMCID: PMC11410131 DOI: 10.1007/s10571-023-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
Zebrafish are widely considered an excellent vertebrate model for studying the pathogenesis of human diseases because of their transparency of embryonic development, easy breeding, high similarity with human genes, and easy gene manipulation. Previous studies have shown that zebrafish as a model organism provides an ideal operating platform for clarifying the pathological and molecular mechanisms of neurodegenerative diseases and related human diseases. This review mainly summarizes the achievements and prospects of zebrafish used as model organisms in the research of neurodegenerative diseases and other human diseases related to the nervous system in recent years. In the future study of human disease mechanisms, the application of the zebrafish model will continue to provide a valuable operating platform and technical support for investigating and finding better prevention and treatment of these diseases, which has broad application prospects and practical significance. Zebrafish models used in neurodegenerative diseases and other diseases related to the nervous system.
Collapse
Affiliation(s)
- Yanying Liu
- Department of Basic Medicine, School of Nursing and Health, Qingdao Huanghai University, Qingdao, 266427, China.
| |
Collapse
|
9
|
Nango H, Tsuruta K, Miyagishi H, Aono Y, Saigusa T, Kosuge Y. Update on the pathological roles of prostaglandin E 2 in neurodegeneration in amyotrophic lateral sclerosis. Transl Neurodegener 2023; 12:32. [PMID: 37337289 DOI: 10.1186/s40035-023-00366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of upper and lower motor neurons. The pathogenesis of ALS remains largely unknown; however, inflammation of the spinal cord is a focus of ALS research and an important pathogenic process in ALS. Prostaglandin E2 (PGE2) is a major lipid mediator generated by the arachidonic-acid cascade and is abundant at inflammatory sites. PGE2 levels are increased in the postmortem spinal cords of ALS patients and in ALS model mice. Beneficial therapeutic effects have been obtained in ALS model mice using cyclooxygenase-2 inhibitors to inhibit the biosynthesis of PGE2, but the usefulness of this inhibitor has not yet been proven in clinical trials. In this review, we present current evidence on the involvement of PGE2 in the progression of ALS and discuss the potential of microsomal prostaglandin E synthase (mPGES) and the prostaglandin receptor E-prostanoid (EP) 2 as therapeutic targets for ALS. Signaling pathways involving prostaglandin receptors mediate toxic effects in the central nervous system. In some situations, however, the receptors mediate neuroprotective effects. Our recent studies demonstrated that levels of mPGES-1, which catalyzes the final step of PGE2 biosynthesis, are increased at the early-symptomatic stage in the spinal cords of transgenic ALS model mice carrying the G93A variant of superoxide dismutase-1. In addition, in an experimental motor-neuron model used in studies of ALS, PGE2 induces the production of reactive oxygen species and subsequent caspase-3-dependent cytotoxicity through activation of the EP2 receptor. Moreover, this PGE2-induced EP2 up-regulation in motor neurons plays a role in the death of motor neurons in ALS model mice. Further understanding of the pathophysiological role of PGE2 in neurodegeneration may provide new insights to guide the development of novel therapies for ALS.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Komugi Tsuruta
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Hiroko Miyagishi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Yuri Aono
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Tadashi Saigusa
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan.
| |
Collapse
|
10
|
Zhou Y, Liu X, Ding C, Xiang B, Yan L. Positive Preemptive Analgesia Effectiveness of Pregabalin Combined with Celecoxib in Total Knee Arthroplasty: A Prospective Controlled Randomized Study. Pain Res Manag 2023; 2023:7088004. [PMID: 36686371 PMCID: PMC9851777 DOI: 10.1155/2023/7088004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023]
Abstract
Objective The purpose of the present study (a randomized clinical trial) was to evaluate the preemptive analgesic effects of pregabalin combined with celecoxib in total knee arthroplasty (TKA). Methods From January 2019 to June 2021, we enrolled 149 patients who underwent TKA and divided them into four groups: the placebo group (n = 36), celecoxib group (n = 38), pregabalin group (n = 38), and combination group (n = 37). Each group was given the corresponding preemptive analgesia regimen at 12 and 2 hours before surgery. The pain score at rest and upon movement, cumulative dosage of sufentanil, knee range of motion (ROM), high-sensitivityC-reactive protein (hs-CRP) level, and adverse effects were evaluated after TKA to compare the effects of the preemptive analgesia regimens among the four groups. Results The pain scores upon movement were significantly lower in the combination group than in the other three groups at 6, 12, 24, and 48 hours after surgery (P < 0.05). The cumulative dose of sufentanil within 48 hours after surgery was lowest in the combined group among the four groups (P < 0.05). Hs-CRP, ROM, and postoperative nausea and vomiting (PONV) were within 72 hours after surgery significantly improved in the combination group compared with those of the three other groups (P < 0.05). Conclusion The preemptive analgesia regimen of pregabalin combined with celecoxib had positive effects on improving acute pain and reducing the cumulative dose of opioids after TKA. This trial is registered with ChiCTR2100041595.
Collapse
Affiliation(s)
- Yi Zhou
- The Department of Orthopaedics, The Jian Yang Hospital of Traditional Chinese Medicine, Jianyang 641400, China
| | - Xiaoyan Liu
- The Department of Orthopaedics, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi City), Zunyi 563000, China
| | - Chuan Ding
- The Department of Orthopaedics, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi City), Zunyi 563000, China
| | - Bingyan Xiang
- The Department of Orthopaedics, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi City), Zunyi 563000, China
| | - Ling Yan
- The Department of Orthopaedics, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi City), Zunyi 563000, China
| |
Collapse
|
11
|
Salomon-Zimri S, Pushett A, Russek-Blum N, Van Eijk RPA, Birman N, Abramovich B, Eitan E, Elgrart K, Beaulieu D, Ennist DL, Berry JD, Paganoni S, Shefner JM, Drory VE. Combination of ciprofloxacin/celecoxib as a novel therapeutic strategy for ALS. Amyotroph Lateral Scler Frontotemporal Degener 2022; 24:263-271. [PMID: 36106817 DOI: 10.1080/21678421.2022.2119868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE This study aimed to evaluate the safety and tolerability of a fixed-dose co-formulation of ciprofloxacin and celecoxib (PrimeC) in patients with amyotrophic lateral sclerosis (ALS), and to examine its effects on disease progression and ALS-related biomarkers. METHODS In this proof of concept, open-label, phase IIa study of PrimeC in 15 patients with ALS, participants were administered PrimeC thrice daily for 12 months. The primary endpoints were safety and tolerability. Exploratory endpoints included disease progression outcomes such as forced vital capacity, revised ALS functional rating scale, and effect on algorithm-predicted survival. In addition, indications of a biological effect were assessed by selected biomarker analyses, including TDP-43 and LC3 levels in neuron-derived exosomes (NDEs), and serum neurofilaments. RESULTS Four participants experienced adverse events (AEs) related to the study drug. None of these AEs were unexpected, and most were mild or moderate (69%). Additionally, no serious AEs were related to the study drug. One participant tested positive for COVID-19 and recovered without complications, and no other abnormal laboratory investigations were found. Participants' survival compared to their predictions showed no safety concerns. Biomarker analyses demonstrated significant changes associated with PrimeC in neural-derived exosomal TDP-43 levels and levels of LC3, a key autophagy marker. INTERPRETATION This study supports the safety and tolerability of PrimeC in ALS. Biomarker analyses suggest early evidence of a biological effect. A placebo-controlled trial is required to disentangle the biomarker results from natural progression and to evaluate the efficacy of PrimeC for the treatment of ALS. Summary for social media if publishedTwitter handles: @NeurosenseT, @ShiranZimri•What is the current knowledge on the topic? ALS is a severe neurodegenerative disease, causing death within 2-5 years from diagnosis. To date there is no effective treatment to halt or significantly delay disease progression.•What question did this study address? This study assessed the safety, tolerability and exploratory efficacy of PrimeC, a fixed dose co-formulation of ciprofloxacin and celecoxib in the ALS population.•What does this study add to our knowledge? This study supports the safety and tolerability of PrimeC in ALS, and exploratory biomarker analyses suggest early insight for disease related-alteration.•How might this potentially impact the practice of neurology? These results set the stage for a larger, placebo-controlled study to examine the efficacy of PrimeC, with the potential to become a new drug candidate for ALS.
Collapse
Affiliation(s)
| | | | - Niva Russek-Blum
- NeuroSense Therapeutics, Ltd, Herzliya, Israel
- The Dead Sea Arava Science Center, Auspices of Ben Gurion University, Central Arava, Israel
| | - Ruben P. A. Van Eijk
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Biostatistics and Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nurit Birman
- Neuromuscular Diseases Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Beatrice Abramovich
- Neuromuscular Diseases Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | - James D. Berry
- Department of Neurology Massachusetts General Hospital, Harvard Medical School, Sean M. Healey and AMG Center for ALS at Mass General and Neurological Clinical Research Institute, Boston, MA, USA
| | - Sabrina Paganoni
- Department of Neurology Massachusetts General Hospital, Harvard Medical School, Sean M. Healey and AMG Center for ALS at Mass General and Neurological Clinical Research Institute, Boston, MA, USA
| | | | - Vivian E. Drory
- Neuromuscular Diseases Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
12
|
Bashirzade AA, Zabegalov KN, Volgin AD, Belova AS, Demin KA, de Abreu MS, Babchenko VY, Bashirzade KA, Yenkoyan KB, Tikhonova MA, Amstislavskaya TG, Kalueff AV. Modeling neurodegenerative disorders in zebrafish. Neurosci Biobehav Rev 2022; 138:104679. [PMID: 35490912 DOI: 10.1016/j.neubiorev.2022.104679] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/11/2022] [Accepted: 04/24/2022] [Indexed: 12/15/2022]
Abstract
Neurodegeneration is a major cause of Alzheimer's, Parkinson's, Huntington's, multiple and amyotrophic lateral sclerosis, pontocerebellar hypoplasia, dementia and other related brain disorders. Their complex pathogenesis commonly includes genetic and neurochemical deficits, misfolded protein toxicity, demyelination, apoptosis and mitochondrial dysfunctions. Albeit differing in specific underlying mechanisms, neurodegenerative disorders typically display evolutionarily conserved mechanisms across taxa. Here, we review the role of zebrafish models in recapitulating major human and rodent neurodegenerative conditions, demonstrating this species as a highly relevant experimental model for research on neurodegenerative diseases, and discussing how these fish models can further clarify the underlying genetic, neurochemical, neuroanatomical and behavioral pathogenic mechanisms.
Collapse
Affiliation(s)
- Alim A Bashirzade
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | | | - Andrey D Volgin
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Alisa S Belova
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Scientific Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia; Almazov Medical Research Center, St. Petersburg, Russia
| | | | - Vladislav Ya Babchenko
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Kseniya A Bashirzade
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, M Heratsi Yerevan State Medical University, Yerevan, Armenia; COBRAIN Center - Scientific Educational Center for Fundamental Brain Research, Yerevan, Armenia
| | - Maria A Tikhonova
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Allan V Kalueff
- The Russian Academy of Sciences, Moscow, Russia; Ural Federal University, Yekaterinburg, Russia; COBRAIN Center - Scientific Educational Center for Fundamental Brain Research, Yerevan, Armenia.
| |
Collapse
|
13
|
Jarema KA, Hunter DL, Hill BN, Olin JK, Britton KN, Waalkes MR, Padilla S. Developmental Neurotoxicity and Behavioral Screening in Larval Zebrafish with a Comparison to Other Published Results. TOXICS 2022; 10:256. [PMID: 35622669 PMCID: PMC9145655 DOI: 10.3390/toxics10050256] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023]
Abstract
With the abundance of chemicals in the environment that could potentially cause neurodevelopmental deficits, there is a need for rapid testing and chemical screening assays. This study evaluated the developmental toxicity and behavioral effects of 61 chemicals in zebrafish (Danio rerio) larvae using a behavioral Light/Dark assay. Larvae (n = 16-24 per concentration) were exposed to each chemical (0.0001-120 μM) during development and locomotor activity was assessed. Approximately half of the chemicals (n = 30) did not show any gross developmental toxicity (i.e., mortality, dysmorphology or non-hatching) at the highest concentration tested. Twelve of the 31 chemicals that did elicit developmental toxicity were toxic at the highest concentration only, and thirteen chemicals were developmentally toxic at concentrations of 10 µM or lower. Eleven chemicals caused behavioral effects; four chemicals (6-aminonicotinamide, cyclophosphamide, paraquat, phenobarbital) altered behavior in the absence of developmental toxicity. In addition to screening a library of chemicals for developmental neurotoxicity, we also compared our findings with previously published results for those chemicals. Our comparison revealed a general lack of standardized reporting of experimental details, and it also helped identify some chemicals that appear to be consistent positives and negatives across multiple laboratories.
Collapse
Affiliation(s)
- Kimberly A. Jarema
- Center for Public Health and Environmental Assessment, Immediate Office, Program Operations Staff, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Deborah L. Hunter
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (D.L.H.); (J.K.O.)
| | - Bridgett N. Hill
- ORISE Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Jeanene K. Olin
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (D.L.H.); (J.K.O.)
| | - Katy N. Britton
- ORAU Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Matthew R. Waalkes
- ORISE Research Participation Program Hosted by EPA, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, Genetic and Cellular Toxicology Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (D.L.H.); (J.K.O.)
| |
Collapse
|
14
|
Pampalakis G, Angelis G, Zingkou E, Vekrellis K, Sotiropoulou G. A chemogenomic approach is required for effective treatment of amyotrophic lateral sclerosis. Clin Transl Med 2022; 12:e657. [PMID: 35064780 PMCID: PMC8783349 DOI: 10.1002/ctm2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
ALS is a fatal untreatable disease involving degeneration of motor neurons. Μultiple causative genes encoding proteins with versatile functions have been identified indicating that diverse biological pathways lead to ALS. Chemical entities still represent a promising choice to delay ALS progression, attenuate symptoms and/or increase life expectancy, but also gene-based and stem cell-based therapies are in the process of development, and some are tested in clinical trials. Various compounds proved effective in transgenic models overexpressing distinct ALS causative genes unfortunately though, they showed no efficacy in clinical trials. Notably, while animal models provide a uniform genetic background for preclinical testing, ALS patients are not stratified, and the distinct genetic forms of ALS are treated as one group, which could explain the observed discrepancies between treating genetically homogeneous mice and quite heterogeneous patient cohorts. We suggest that chemical entity-genotype correlation should be exploited to guide patient stratification for pharmacotherapy, that is administered drugs should be selected based on the ALS genetic background.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacology - Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Angelis
- Department of Pharmacology - Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Kostas Vekrellis
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| |
Collapse
|
15
|
Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, Bonanno G, Milanese M. Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212236. [PMID: 34830115 PMCID: PMC8619465 DOI: 10.3390/ijms222212236] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to ALS development and many emerging gene mutations have been discovered in recent years. Over the decades since 1990, several animal models have been generated to study ALS pathology including both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the development of new promising therapeutics. In this review, we describe the up to date and available ALS genetic animal models, classified by the different genetic mutations and divided per species, pointing out their features in modeling, the onset and progression of the pathology, as well as their specific pathological hallmarks. Moreover, we highlight similarities, differences, advantages, and limitations, aimed at helping the researcher to select the most appropriate experimental animal model, when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| | - Roberta Arianna Zerbo
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Matilde Balbi
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Giulia Frumento
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
16
|
Wang X, Zhang JB, He KJ, Wang F, Liu CF. Advances of Zebrafish in Neurodegenerative Disease: From Models to Drug Discovery. Front Pharmacol 2021; 12:713963. [PMID: 34335276 PMCID: PMC8317260 DOI: 10.3389/fphar.2021.713963] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disease (NDD), including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, are characterized by the progressive loss of neurons which leads to the decline of motor and/or cognitive function. Currently, the prevalence of NDD is rapidly increasing in the aging population. However, valid drugs or treatment for NDD are still lacking. The clinical heterogeneity and complex pathogenesis of NDD pose a great challenge for the development of disease-modifying therapies. Numerous animal models have been generated to mimic the pathological conditions of these diseases for drug discovery. Among them, zebrafish (Danio rerio) models are progressively emerging and becoming a powerful tool for in vivo study of NDD. Extensive use of zebrafish in pharmacology research or drug screening is due to the high conserved evolution and 87% homology to humans. In this review, we summarize the zebrafish models used in NDD studies, and highlight the recent findings on pharmacological targets for NDD treatment. As high-throughput platforms in zebrafish research have rapidly developed in recent years, we also discuss the application prospects of these new technologies in future NDD research.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jin-Bao Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Kai-Jie He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology, Suqian First Hospital, Suqian, China
| |
Collapse
|
17
|
Soll M, Goldshtein H, Rotkopf R, Russek-Blum N, Gross Z. A Synthetic SOD/Catalase Mimic Compound for the Treatment of ALS. Antioxidants (Basel) 2021; 10:827. [PMID: 34067277 PMCID: PMC8224677 DOI: 10.3390/antiox10060827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. To date, the etiology of the disease is still unclear, with evidence of reactive oxygen species, mitochondrial dysfunction, iron homeostasis perturbation, protein misfolding and protein aggregation as key players in the pathology of the disease. Twenty percent of familial ALS and two percent of sporadic ALS instances are due to a mutation in Cu/Zn superoxide dismutase (SOD1). Sporadic and familial ALS affects the same neurons with similar pathology; therefore, the underlying hypothesis is that therapies effective in mutant SOD1 models could be translated to sporadic ALS. Corrole metal complexes have lately been identified as strong and potent catalytic antioxidants with beneficial effects in oxidative stress-related diseases such as Parkinson's disease, Alzheimer's disease, atherosclerosis, diabetes and its complications. One of the most promising candidates is the iron complex of an amphiphilic corrole, 1-Fe. In this study we used the SOD1 G93R mutant zebrafish ALS model to assess whether 1-Fe, as a potent catalytic antioxidant, displays any therapeutic merits in vivo. Our results show that 1-Fe caused a substantial increase in mutant zebrafish locomotor activity (up to 30%), bringing the locomotive abilities of the mutant treated group close to that of the wild type untreated group (50% more than the mutated untreated group). Furthermore, 1-Fe did not affect WT larvae locomotor activity, suggesting that 1-Fe enhances locomotor ability by targeting mechanisms underlying SOD1 ALS specifically. These results may pave the way for future development of 1-Fe as a viable treatment for ALS.
Collapse
Affiliation(s)
- Matan Soll
- Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000, Israel;
| | - Hagit Goldshtein
- The Dead Sea & Arava Science Center, Auspices of Ben Gurion University, Central Arava 86815, Israel;
| | - Ron Rotkopf
- Bioinformatics and Biological Computing Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Niva Russek-Blum
- The Dead Sea & Arava Science Center, Auspices of Ben Gurion University, Central Arava 86815, Israel;
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|