1
|
Xing X, Liu X, Li X, Li M, Wu X, Huang X, Xu A, Liu Y, Zhang J. Insights into spinal muscular atrophy from molecular biomarkers. Neural Regen Res 2025; 20:1849-1863. [PMID: 38934395 PMCID: PMC11691461 DOI: 10.4103/nrr.nrr-d-24-00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/15/2024] [Accepted: 05/11/2024] [Indexed: 06/28/2024] Open
Abstract
Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness. It is one of the most common genetic causes of mortality among infants aged less than 2 years. Biomarker research is currently receiving more attention, and new candidate biomarkers are constantly being discovered. This review initially discusses the evaluation methods commonly used in clinical practice while briefly outlining their respective pros and cons. We also describe recent advancements in research and the clinical significance of molecular biomarkers for spinal muscular atrophy, which are classified as either specific or non-specific biomarkers. This review provides new insights into the pathogenesis of spinal muscular atrophy, the mechanism of biomarkers in response to drug-modified therapies, the selection of biomarker candidates, and would promote the development of future research. Furthermore, the successful utilization of biomarkers may facilitate the implementation of gene-targeting treatments for patients with spinal muscular atrophy.
Collapse
Affiliation(s)
- Xiaodong Xing
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xinzhu Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Wu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaohui Huang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
de Albuquerque ALA, Chadanowicz JK, Giudicelli GC, Staub ALP, Weber AC, Silva JMDS, Becker MM, Kowalski TW, Siebert M, Saute JAM. Serum myostatin as a candidate disease severity and progression biomarker of spinal muscular atrophy. Brain Commun 2024; 6:fcae062. [PMID: 38487549 PMCID: PMC10939446 DOI: 10.1093/braincomms/fcae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
The identification of biomarkers for spinal muscular atrophy is crucial for predicting disease progression, severity, and response to new disease-modifying therapies. This study aimed to investigate the role of serum levels of myostatin and follistatin as biomarkers for spinal muscular atrophy, considering muscle atrophy secondary to denervation as the main clinical manifestation of the disease. The study evaluated the differential gene expression of myostatin and follistatin in a lesional model of gastrocnemius denervation in mice, as well as in a meta-analysis of three datasets in transgenic mice models of spinal muscular atrophy, and in two studies involving humans with spinal muscular atrophy. Subsequently, a case-control study involving 27 spinal muscular atrophy patients and 27 controls was conducted, followed by a 12-month cohort study with 25 spinal muscular atrophy cases. Serum levels of myostatin and follistatin were analysed using enzyme-linked immunosorbent assay at a single centre in southern Brazil. Skeletal muscle gene expression of myostatin decreased and of follistatin increased following lesional muscle denervation in mice, consistent with findings in the spinal muscular atrophy transgenic mice meta-analysis and in the iliopsoas muscle of five patients with spinal muscular atrophy type 1. Median serum myostatin levels were significantly lower in spinal muscular atrophy patients (98 pg/mL; 5-157) compared to controls (412 pg/mL; 299-730) (P < 0.001). Lower myostatin levels were associated with greater disease severity based on clinician-rated outcomes (Rho = 0.493-0.812; P < 0.05). After 12 months, there was a further reduction in myostatin levels among spinal muscular atrophy cases (P = 0.021). Follistatin levels did not differ between cases and controls, and no significant changes were observed over time. The follistatin:myostatin ratio was significantly increased in spinal muscular atrophy subjects and inversely correlated with motor severity. Serum myostatin levels show promise as a novel biomarker for evaluating the severity and progression of spinal muscular atrophy. The decrease in myostatin levels and the subsequent favourable environment for muscle growth may be attributed to denervation caused by motor neuron dysfunction.
Collapse
Affiliation(s)
- Ana Letícia Amorim de Albuquerque
- Graduate Program in Medicine, Medical Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Clinical Neurogenetics research group, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
| | - Júlia Kersting Chadanowicz
- Clinical Neurogenetics research group, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
| | - Giovanna Câmara Giudicelli
- Bioinformatics core, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
- Graduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Ana Lucia Portella Staub
- Clinical Neurogenetics research group, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
| | - Arthur Carpeggiani Weber
- Clinical Neurogenetics research group, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
| | | | | | - Thayne Woycinck Kowalski
- Bioinformatics core, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
- Graduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
| | - Marina Siebert
- Unit of Laboratorial Research, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-007, Brazil
- Graduate Program in Gastroenterology and Hepatology, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Jonas Alex Morales Saute
- Graduate Program in Medicine, Medical Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Clinical Neurogenetics research group, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Brazil
- Department of Internal Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| |
Collapse
|
3
|
Babić M, Banović M, Berečić I, Banić T, Babić Leko M, Ulamec M, Junaković A, Kopić J, Sertić J, Barišić N, Šimić G. Molecular Biomarkers for the Diagnosis, Prognosis, and Pharmacodynamics of Spinal Muscular Atrophy. J Clin Med 2023; 12:5060. [PMID: 37568462 PMCID: PMC10419842 DOI: 10.3390/jcm12155060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive degenerative illness that affects 1 in every 6 to 11,000 live births. This autosomal recessive disorder is caused by homozygous deletion or mutation of the SMN1 gene (survival motor neuron). As a backup, the SMN1 gene has the SMN2 gene, which produces only 10% of the functional SMN protein. Nusinersen and risdiplam, the first FDA-approved medications, act as SMN2 pre-mRNA splicing modifiers and enhance the quantity of SMN protein produced by this gene. The emergence of new therapies for SMA has increased the demand for good prognostic and pharmacodynamic (response) biomarkers in SMA. This article discusses current molecular diagnostic, prognostic, and pharmacodynamic biomarkers that could be assessed in SMA patients' body fluids. Although various proteomic, genetic, and epigenetic biomarkers have been explored in SMA patients, more research is needed to uncover new prognostic and pharmacodynamic biomarkers (or a combination of biomarkers).
Collapse
Affiliation(s)
- Marija Babić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Maria Banović
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ivana Berečić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Tea Banić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Monika Ulamec
- Department of Pathology, University Clinical Hospital Sestre Milosrdnice Zagreb, 10000 Zagreb, Croatia
- Department of Pathology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Alisa Junaković
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Janja Kopić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Jadranka Sertić
- Department of Medical Chemistry and Biochemistry, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Nina Barišić
- Department of Pediatrics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
D’Silva AM, Kariyawasam D, Venkat P, Mayoh C, Farrar MA. Identification of Novel CSF-Derived miRNAs in Treated Paediatric Onset Spinal Muscular Atrophy: An Exploratory Study. Pharmaceutics 2023; 15:pharmaceutics15010170. [PMID: 36678797 PMCID: PMC9865256 DOI: 10.3390/pharmaceutics15010170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
The availability of disease modifying therapies for spinal muscular atrophy (SMA) have created an urgent need to identify clinically meaningful biomarkers that provide insight into disease progression and therapeutic response. microRNAs (miRNA) have been shown to be involved in the pathogenesis of SMA and have the potential to provide insight within the field of SMA. miRNA-sequencing was utilized to identify differential miRNA expression in the cerebrospinal fluid (CSF) in six children with SMA treated with nusinersen in this exploratory study. Fourteen differentially expressed miRNAs were significantly altered in CSF from baseline to follow-up during treatment with nusinersen. The greatest magnitude of change was noted in miR-7-5p, miR-15a-5p, miR-15b-3p/5p, miR-126-5p, miR-128-2-5p and miR-130a-3p which encompassed a spectrum of functions predominantly in neurogenesis, neuronal differentiation and growth. The dominant signaling pathways identified in this study were the mammalian target of rapamycin and the mitogen-activated protein kinase signaling pathways. This study identified multiple miRNAs that were involved in the complex interplay between neurodevelopment and neurodegeneration.
Collapse
Affiliation(s)
- Arlene M. D’Silva
- Department of Neurology, Sydney Children’s Hospital Network, Sydney, NSW 2031, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Correspondence: ; Tel.: +61-2-9382-5517
| | - Didu Kariyawasam
- Department of Neurology, Sydney Children’s Hospital Network, Sydney, NSW 2031, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Pooja Venkat
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Chelsea Mayoh
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Michelle A. Farrar
- Department of Neurology, Sydney Children’s Hospital Network, Sydney, NSW 2031, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Magen I, Aharoni S, Yacovzada NS, Tokatly Latzer I, Alves CRR, Sagi L, Fattal‐Valevski A, Swoboda KJ, Katz J, Bruckheimer E, Nevo Y, Hornstein E. Muscle microRNAs in the cerebrospinal fluid predict clinical response to nusinersen therapy in type II and type III spinal muscular atrophy patients. Eur J Neurol 2022; 29:2420-2430. [PMID: 35510740 PMCID: PMC9544362 DOI: 10.1111/ene.15382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE The antisense oligonucleotide nusinersen (Spinraza) regulates splicing of the survival motor neuron 2 (SMN2) messenger RNA to increase SMN protein expression. Nusinersen has improved ventilator-free survival and motor function outcomes in infantile onset forms of spinal muscular atrophy (SMA), treated early in the course of the disease. However, the response in later onset forms of SMA is highly variable and dependent on symptom severity and disease duration at treatment initiation. Therefore, we aimed to identify novel noninvasive biomarkers that could predict the response to nusinersen in type II and III SMA patients. METHODS Thirty-four SMA patients were included. We applied next generation sequencing to identify microRNAs in the cerebrospinal fluid (CSF) as candidate biomarkers predicting response to nusinersen. Hammersmith Functional Motor Scale Expanded (HFMSE) was conducted at baseline and 6 months after initiation of nusinersen therapy to assess motor function. Patients changing by ≥3 or ≤0 points in the HFMSE total score were considered to be responders or nonresponders, respectively. RESULTS Lower baseline levels of two muscle microRNAs (miR-206 and miR-133a-3p), alone or in combination, predicted the clinical response to nusinersen after 6 months of therapy. Moreover, miR-206 levels were inversely correlated with the HFMSE score. CONCLUSIONS Lower miR-206 and miR-133a-3p in the CSF predict more robust clinical response to nusinersen treatment in later onset SMA patients. These novel findings have high clinical relevance for identifying early treatment response to nusinersen in later onset SMA patients and call for testing the ability of miRNAs to predict more sustained long-term benefit.
Collapse
Affiliation(s)
- Iddo Magen
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
- Department of Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Sharon Aharoni
- Institute of Pediatric NeurologySchneider Children's Medical Center of IsraelPetach TikvaIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Nancy Sarah Yacovzada
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
- Department of Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Itay Tokatly Latzer
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Pediatric Neurology InstituteDana‐Dwek Children's HospitalTel Aviv Medical CenterTel AvivIsrael
| | - Christiano R. R. Alves
- Department of NeurologyCenter for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Liora Sagi
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Pediatric Neurology InstituteDana‐Dwek Children's HospitalTel Aviv Medical CenterTel AvivIsrael
| | - Aviva Fattal‐Valevski
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Pediatric Neurology InstituteDana‐Dwek Children's HospitalTel Aviv Medical CenterTel AvivIsrael
| | - Kathryn J. Swoboda
- Department of NeurologyCenter for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Jacob Katz
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Division of Department of AnesthesiaSchneider Children's Medical Center of IsraelPetach TikvaIsrael
| | - Elchanan Bruckheimer
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Cardiology InstituteSchneider Children's Medical Center of IsraelPetach TikvaIsrael
| | - Yoram Nevo
- Institute of Pediatric NeurologySchneider Children's Medical Center of IsraelPetach TikvaIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Eran Hornstein
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
- Department of Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
6
|
Circulating Biomarkers in Neuromuscular Disorders: What Is Known, What Is New. Biomolecules 2021; 11:biom11081246. [PMID: 34439911 PMCID: PMC8393752 DOI: 10.3390/biom11081246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
The urgent need for new therapies for some devastating neuromuscular diseases (NMDs), such as Duchenne muscular dystrophy or amyotrophic lateral sclerosis, has led to an intense search for new potential biomarkers. Biomarkers can be classified based on their clinical value into different categories: diagnostic biomarkers confirm the presence of a specific disease, prognostic biomarkers provide information about disease course, and therapeutic biomarkers are designed to predict or measure treatment response. Circulating biomarkers, as opposed to instrumental/invasive ones (e.g., muscle MRI or nerve ultrasound, muscle or nerve biopsy), are generally easier to access and less “time-consuming”. In addition to well-known creatine kinase, other promising molecules seem to be candidate biomarkers to improve the diagnosis, prognosis and prediction of therapeutic response, such as antibodies, neurofilaments, and microRNAs. However, there are some criticalities that can complicate their application: variability during the day, stability, and reliable performance metrics (e.g., accuracy, precision and reproducibility) across laboratories. In the present review, we discuss the application of biochemical biomarkers (both validated and emerging) in the most common NMDs with a focus on their diagnostic, prognostic/predictive and therapeutic application, and finally, we address the critical issues in the introduction of new biomarkers.
Collapse
|