1
|
Wei X, Wang S, Zhang M, Yan Y, Wang Z, Wei W, Tuo H, Wang Z. Alterations of diffusion kurtosis measures in gait-related white matter in the "ON-OFF state" of Parkinson's disease. Chin Med J (Engl) 2025:00029330-990000000-01448. [PMID: 40012092 DOI: 10.1097/cm9.0000000000003486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Gait impairment is closely related to quality of life in patients with Parkinson's disease (PD). This study aimed to explore alterations in brain microstructure in PD patients and healthy controls (HCs) and to identify the correlation of gait impairment in the ON and OFF states of patients with PD, respectively. METHODS We enrolled 24 PD patients and 29 healthy controls (HCs) from the Movement Disorders Program at Beijing Friendship Hospital Capital Medical University between 2019 and 2020. We acquired magnetic resonance imaging (MRI) scans and processed the diffusion kurtosis imaging (DKI) images. Preprocessing of diffusion-weighted data was performed with Mrtrix3 software, using a directional distribution function to track participants' main white matter fiber bundles. Demographic and clinical characteristics were recorded. Quantitative gait and clinical scales were used to assess the status of medication ON and OFF in PD patients. RESULTS The axial kurtosis (AK), mean kurtosis (MK), and radial kurtosis (RK) of five specific white matter fiber tracts, the bilateral corticospinal tract, left superior longitudinal fasciculus, left anterior thalamic radiation, forceps minor, and forceps major were significantly higher in PD patients compared to HCs. Additionally, the MK values were negatively correlated with Timed Up and Go Test (TUG) scores in both the ON and OFF in PD patients. Within the PD group, higher AK, MK, and RK values, whether the patients were ON or OFF, were associated with better gait performance (i.e., higher velocity and stride length). CONCLUSIONS PD exhibits characteristic regional patterns of white matter microstructural degradation. Correlations between objective gait parameters and DKI values suggest that dopamine-responsive gait function depends on preserved white matter microstructure. DKI-based Tract-Based Spatial Statistics (TBSS) analysis may serve as a tool for evaluating PD-related motor impairments (e.g., gait abnormalities) and could yield potential neuroimaging biomarkers.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shiya Wang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Mingkai Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ying Yan
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Wei
- Division of Science and Technology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Houzhen Tuo
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
2
|
Li S, Zhu Y, Lai H, Da X, Liao T, Liu X, Deng F, Chen L. Increased prevalence of vertebrobasilar dolichoectasia in Parkinson's disease and its effect on white matter microstructure and network. Neuroreport 2024; 35:627-637. [PMID: 38813904 DOI: 10.1097/wnr.0000000000002046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This study aimed to investigate the prevalence of vertebrobasilar dolichoectasia (VBD) in Parkinson's disease (PD) patients and analyze its role in gray matter changes, white matter (WM) microstructure and network alterations in PD. This is a cross-sectional study including 341 PD patients. Prevalence of VBD in these PD patients was compared with general population. Diffusion tensor imaging and T1-weighted imaging analysis were performed among 174 PD patients with or without VBD. Voxel-based morphometry analysis was used to estimate gray matter volume changes. Tract-based spatial statistics and region of interest-based analysis were used to evaluate WM microstructure changes. WM network analysis was also performed. Significantly higher prevalence of VBD in PD patients was identified compared with general population. Lower fractional anisotropy and higher diffusivity, without significant gray matter involvement, were found in PD patients with VBD in widespread areas. Decreased global and local efficiency, increased hierarchy, decreased degree centrality at left Rolandic operculum, increased betweenness centrality at left postcentral gyrus and decreased average connectivity strength between and within several modules were identified in PD patients with VBD. VBD is more prevalent in PD patients than general population. Widespread impairments in WM microstructure and WM network involving various motor and nonmotor PD symptom-related areas are more prominent in PD patients with VBD compared with PD patients without VBD.
Collapse
Affiliation(s)
- Sichen Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhu Y, Li S, Da X, Lai H, Tan C, Liu X, Deng F, Chen L. Study of the relationship between onset lateralization and hemispheric white matter asymmetry in Parkinson's disease. J Neurol 2023; 270:5004-5016. [PMID: 37382631 DOI: 10.1007/s00415-023-11849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by a lateralized onset, but its cause and mechanism are still unclear. METHODS Obtaining diffusion tensor imaging (DTI) data from the Parkinson's Progression Markers Initiative (PPMI). Tract-based spatial statistics analysis and region-of-interest-based analysis were performed to evaluate the white matter (WM) asymmetry using original DTI parameters, Z Score normalized parameters, or the asymmetry index (AI). Hierarchical cluster analysis and least absolute shrinkage and selection operator regression were performed to construct predictive models for predicting the PD onset side. DTI data from The Second Affiliated Hospital of Chongqing Medical University were obtained for external validation of the prediction model. RESULTS 118 PD patients and 69 healthy controls (HC) from PPMI were included. Right-onset PD patients presented more asymmetric areas than left-onset PD patients. The inferior cerebellar peduncle (ICP), superior cerebellar peduncle (SCP), external capsule (EC), cingulate gyrus (CG), superior fronto-occipital fasciculus (SFO), uncinate fasciculus (UNC), and tapetum (TAP) showed significant asymmetry in left-onset and right-onset PD patients. An onset-side-specific pattern of WM alterations exists in PD patients, and a prediction model was constructed. The predicting models based on AI and ΔZ Score presented favorable efficacy in predicting PD onset side by external validation in 26 PD patients and 16 HCs from our hospital. CONCLUSIONS Right-onset PD patients may have more severe WM damage than left-onset PD patients. WM asymmetry in ICP, SCP, EC, CG, SFO, UNC, and TAP may predict PD onset side. Imbalances in the WM network may underlie the mechanism of lateralized onset in PD.
Collapse
Affiliation(s)
- Yuxia Zhu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Sichen Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xiaohui Da
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Hongyu Lai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Fen Deng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| |
Collapse
|
4
|
Hernadi G, Perlaki G, Kovacs M, Pinter D, Orsi G, Janszky J, Kovacs N. White matter hyperintensities associated with impulse control disorders in Parkinson's Disease. Sci Rep 2023; 13:10594. [PMID: 37391475 PMCID: PMC10313834 DOI: 10.1038/s41598-023-37054-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/15/2023] [Indexed: 07/02/2023] Open
Abstract
Impulse control disorders (ICDs) in Parkinson's disease (PD) are increasingly recognized as clinically significant non-motor features that potentially impair the quality of life. White matter hyperintensities (WMHs), detected by magnetic resonance imaging, are frequently observed in PD and can be associated with both motor- and certain non-motor symptoms. Given the limited number of non-motor features studied in this context, our aim was to reveal the potential association between the severity of WMHs and ICDs in PD. Fluid-attenuated inversion recovery magnetic resonance images were retrospectively evaluated in 70 patients with PD (48 males; 59.3 ± 10.1 years). The severity of WMHs was assessed by Fazekas scores and by the volume and number of supratentorial WMHs. ICDs were evaluated using the modified Minnesota Impulsive Disorders Interview. Significant interaction between age and the severity of WMHs was present for ICDs. In our younger patients (< 60.5 years), severity of WMHs was positively associated with ICDs (p = 0.004, p = 0.021, p < 0.001 and p < 0.001, respectively for periventricular white matter and total Fazekas scores and the volume and number of WMHs). Our study supports the hypothesis that WMHs of presumed vascular origin may contribute to ICDs in PD. Future prospective studies are needed to assess the prognostic relevance of this finding.
Collapse
Affiliation(s)
| | - Gabor Perlaki
- Pecs Diagnostic Centre, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Marton Kovacs
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary.
| | - David Pinter
- ELKH-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Gergely Orsi
- Pecs Diagnostic Centre, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Jozsef Janszky
- ELKH-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Norbert Kovacs
- ELKH-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
5
|
Rashidi F, Khanmirzaei MH, Hosseinzadeh F, Kolahchi Z, Jafarimehrabady N, Moghisseh B, Aarabi MH. Cingulum and Uncinate Fasciculus Microstructural Abnormalities in Parkinson's Disease: A Systematic Review of Diffusion Tensor Imaging Studies. BIOLOGY 2023; 12:biology12030475. [PMID: 36979166 PMCID: PMC10045759 DOI: 10.3390/biology12030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Diffusion tensor imaging (DTI) is gaining traction in neuroscience research as a tool for evaluating neural fibers. The technique can be used to assess white matter (WM) microstructure in neurodegenerative disorders, including Parkinson disease (PD). There is evidence that the uncinate fasciculus and the cingulum bundle are involved in the pathogenesis of PD. These fasciculus and bundle alterations correlate with the symptoms and stages of PD. PRISMA 2022 was used to search PubMed and Scopus for relevant articles. Our search revealed 759 articles. Following screening of titles and abstracts, a full-text review, and implementing the inclusion criteria, 62 papers were selected for synthesis. According to the review of selected studies, WM integrity in the uncinate fasciculus and cingulum bundles can vary according to symptoms and stages of Parkinson disease. This article provides structural insight into the heterogeneous PD subtypes according to their cingulate bundle and uncinate fasciculus changes. It also examines if there is any correlation between these brain structures' structural changes with cognitive impairment or depression scales like Geriatric Depression Scale-Short (GDS). The results showed significantly lower fractional anisotropy values in the cingulum bundle compared to healthy controls as well as significant correlations between FA and GDS scores for both left and right uncinate fasciculus regions suggesting that structural damage from disease progression may be linked to cognitive impairments seen in advanced PD patients. This review help in developing more targeted treatments for different types of Parkinson's disease, as well as providing a better understanding of how cognitive impairments may be related to these structural changes. Additionally, using DTI scans can provide clinicians with valuable information about white matter tracts which is useful for diagnosing and monitoring disease progression over time.
Collapse
Affiliation(s)
- Fatemeh Rashidi
- School of Medicine, Tehran University of Medical Science, Tehran 1417613151, Iran
| | | | - Farbod Hosseinzadeh
- School of Medicine, Tehran University of Medical Science, Tehran 1417613151, Iran
| | - Zahra Kolahchi
- School of Medicine, Tehran University of Medical Science, Tehran 1417613151, Iran
| | - Niloofar Jafarimehrabady
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Bardia Moghisseh
- School of Medicine, Arak University of Medical Science, Arak 3848176941, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience (DNS), Padova Neuroscience Center, University of Padova, 35128 Padua, Italy
| |
Collapse
|
6
|
Zhang C, Yuan Y, Sang T, Yu L, Yu Y, Liu X, Zhou W, Zeng Q, Wang J, Peng G, Feng Y. Local white matter abnormalities in Parkinson's disease with mild cognitive impairment: Assessed with neurite orientation dispersion and density imaging. J Neurosci Res 2023; 101:1154-1169. [PMID: 36854050 DOI: 10.1002/jnr.25179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Mild cognitive impairment is a nonmotor complication in Parkinson's disease (PD) that have a high risk of developing dementia. White matter is associated with cognitive function in PD and the alterations may occur before the symptoms of the disease. Previous diffusion tensor imaging (DTI) studies lacked specificity to characterize the concrete contributions of distinct white matter tissue properties. This may lead to inconsistent conclusions about the alteration of white matter microstructure. Here, we used neurite orientation dispersion and density imaging (NODDI) and white matter fiber clustering method to uncover local white matter microstructures in PD with mild cognitive impairment (PD-MCI). This study included 23 PD-MCI and 20 PD with normal cognition (PD-NC) and 21 healthy controls (HC). To probe specific and fine-grained differences, metrics of NODDI and DTI in white matter fiber clusters were evaluated using along-tract analysis. Our results showed that PD-MCI patients had significantly lower neurite density index (NDI) and orientation dispersion index (ODI) in white matter fiber clusters in the prefrontal region. Correlation analysis and receiver operating characteristic (ROC) analysis revealed that the diagnostic performance of NODDI-derived metrics in cingulum bundle (2 clusters) and thalamo-frontal (2 clusters) were superior to DTI metrics. Our study provides a more specific insight to uncover local white matter abnormalities in PD-MCI, which benefit understanding the underlying mechanism of cognitive decline in PD and predicting the disease in advance.
Collapse
Affiliation(s)
- Chengzhe Zhang
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuan Yuan
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian Sang
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Lihua Yu
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Yu
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyang Zhou
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Qingrun Zeng
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jingqiang Wang
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanjing Feng
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
7
|
Kimura I, Revankar GS, Ogawa K, Amano K, Kajiyama Y, Mochizuki H. Neural correlates of impulsive compulsive behaviors in Parkinson's disease: A Japanese retrospective study. Neuroimage Clin 2023; 37:103307. [PMID: 36586362 PMCID: PMC9817029 DOI: 10.1016/j.nicl.2022.103307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Impulsive compulsive behaviors (ICBs) often disturb patients with Parkinson's Disease (PD), of which impulse control disorder (ICD) and dopamine dysregulation syndrome (DDS) are two major subsets. The nucleus accumbens (NAcc) is involved in ICB; however, it remains unclear how the NAcc affects cortical function and defines the different behavioral characteristics of ICD and DDS. OBJECTIVES To identify the cortico-striatal network primarily involved in ICB and the differences in these networks between patients with ICD and DDS using structural and resting-state functional magnetic resonance imaging. METHODS Patients with PD were recruited using data from a previous cohort study and divided into those with ICB (ICB group) and without ICB (non-ICB group) using the Japanese version of the Questionnaire for Impulsive Compulsive Disorders in Parkinson's Disease (J-QUIP). From these two groups, we extracted 37 pairs matched for age, sex, disease duration, and levodopa equivalent daily dose of dopamine agonists. Patients with ICB were further classified as having ICD or DDS based on the J-QUIP subscore. General linear models were used to compare gray matter volume and functional connectivity (FC) of the NAcc, caudate, and putamen between the ICB and non-ICB groups and between patients with ICD and those with DDS. RESULTS We found no significant differences in gray matter volumebetween the ICB and non-ICB groups or between patients with ICD and those with DDS. Compared with the non-ICB group, the FC of the right NAcc in the ICB group was lower in the bilateral ventromedial prefrontal cortex and higher in the left middle occipital gyrus. Furthermore, patients with DDS showed higher FC between the right putamen and left superior temporal gyrus and higher FC between the left caudate and bilateral middle occipital gyrus than patients with ICD. In contrast, patients with ICD exhibited higher FC between the left NAcc and the right posterior cingulate cortex than patients with DDS. CONCLUSIONS The functionally altered network between the right NAcc and ventromedial prefrontal cortex was associated with ICB in PD. In addition, the surrounding cortico-striatal networks may differentiate the behavioral characteristics of patients with ICD and those with DDS.
Collapse
Affiliation(s)
- Ikko Kimura
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Gajanan S Revankar
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kaoru Amano
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yuta Kajiyama
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.
| |
Collapse
|