1
|
Eisenstein M. Do infections have a role in Alzheimer's disease? Nature 2025; 640:S8-S10. [PMID: 40240846 DOI: 10.1038/d41586-025-01104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
|
2
|
Duggan MR, Peng Z, Sipilä PN, Lindbohm JV, Chen J, Lu Y, Davatzikos C, Erus G, Hohman TJ, Andrews SJ, Candia J, Tanaka T, Joynes CM, Alvarado CX, Nalls MA, Cordon J, Daya GN, An Y, Lewis A, Moghekar A, Palta P, Coresh J, Ferrucci L, Kivimäki M, Walker KA. Proteomics identifies potential immunological drivers of postinfection brain atrophy and cognitive decline. NATURE AGING 2024; 4:1263-1278. [PMID: 39143319 PMCID: PMC11408246 DOI: 10.1038/s43587-024-00682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Infections have been associated with the incidence of Alzheimer disease and related dementias, but the mechanisms responsible for these associations remain unclear. Using a multicohort approach, we found that influenza, viral, respiratory, and skin and subcutaneous infections were associated with increased long-term dementia risk. These infections were also associated with region-specific brain volume loss, most commonly in the temporal lobe. We identified 260 out of 942 immunologically relevant proteins in plasma that were differentially expressed in individuals with an infection history. Of the infection-related proteins, 35 predicted volumetric changes in brain regions vulnerable to infection-specific atrophy. Several of these proteins, including PIK3CG, PACSIN2, and PRKCB, were related to cognitive decline and plasma biomarkers of dementia (Aβ42/40, GFAP, NfL, pTau-181). Genetic variants that influenced expression of immunologically relevant infection-related proteins, including ITGB6 and TLR5, predicted brain volume loss. Our findings support the role of infections in dementia risk and identify molecular mediators by which infections may contribute to neurodegeneration.
Collapse
Affiliation(s)
- Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Zhongsheng Peng
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Pyry N Sipilä
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Joni V Lindbohm
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
- Broad Institute of the MIT and Harvard University, The Klarman Cell Observatory, Cambridge, MA, USA
- Brain Sciences, University College London, London, UK
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yifei Lu
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Guray Erus
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shea J Andrews
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Julián Candia
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Cassandra M Joynes
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jenifer Cordon
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Gulzar N Daya
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Alexandria Lewis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Priya Palta
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mika Kivimäki
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
- Brain Sciences, University College London, London, UK
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
3
|
Livingston G, Huntley J, Liu KY, Costafreda SG, Selbæk G, Alladi S, Ames D, Banerjee S, Burns A, Brayne C, Fox NC, Ferri CP, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Nakasujja N, Rockwood K, Samus Q, Shirai K, Singh-Manoux A, Schneider LS, Walsh S, Yao Y, Sommerlad A, Mukadam N. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024; 404:572-628. [PMID: 39096926 DOI: 10.1016/s0140-6736(24)01296-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/08/2024] [Accepted: 06/16/2024] [Indexed: 08/05/2024]
Affiliation(s)
- Gill Livingston
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK.
| | - Jonathan Huntley
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | - Sergi G Costafreda
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Geir Selbæk
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Geriatric Department, Oslo University Hospital, Oslo, Norway
| | - Suvarna Alladi
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | - David Ames
- National Ageing Research Institute, Melbourne, VIC, Australia; University of Melbourne Academic Unit for Psychiatry of Old Age, Melbourne, VIC, Australia
| | - Sube Banerjee
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | | | - Carol Brayne
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Nick C Fox
- The Dementia Research Centre, Department of Neurodegenerative Disease, University College London, London, UK
| | - Cleusa P Ferri
- Health Technology Assessment Unit, Hospital Alemão Oswaldo Cruz, São Paulo, Brazil; Department of Psychiatry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Laura N Gitlin
- College of Nursing and Health Professions, AgeWell Collaboratory, Drexel University, Philadelphia, PA, USA
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Helen C Kales
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California, Sacramento, CA, USA
| | - Mika Kivimäki
- Division of Psychiatry, University College London, London, UK; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Noeline Nakasujja
- Department of Psychiatry College of Health Sciences, Makerere University College of Health Sciences, Makerere University, Kampala City, Uganda
| | - Kenneth Rockwood
- Centre for the Health Care of Elderly People, Geriatric Medicine, Dalhousie University, Halifax, NS, Canada
| | - Quincy Samus
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Bayview, Johns Hopkins University, Baltimore, MD, USA
| | - Kokoro Shirai
- Graduate School of Social and Environmental Medicine, Osaka University, Osaka, Japan
| | - Archana Singh-Manoux
- Division of Psychiatry, University College London, London, UK; Université Paris Cité, Inserm U1153, Paris, France
| | - Lon S Schneider
- Department of Psychiatry and the Behavioural Sciences and Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Sebastian Walsh
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Yao Yao
- China Center for Health Development Studies, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Andrew Sommerlad
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Naaheed Mukadam
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Green RE, Sudre CH, Warren‐Gash C, Butt J, Waterboer T, Hughes AD, Schott JM, Richards M, Chaturvedi N, Williams DM. Common infections and neuroimaging markers of dementia in three UK cohort studies. Alzheimers Dement 2024; 20:2128-2142. [PMID: 38248636 PMCID: PMC10984486 DOI: 10.1002/alz.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 11/25/2023] [Indexed: 01/23/2024]
Abstract
INTRODUCTION We aimed to investigate associations between common infections and neuroimaging markers of dementia risk (brain volume, hippocampal volume, white matter lesions) across three population-based studies. METHODS We tested associations between serology measures (pathogen serostatus, cumulative burden, continuous antibody responses) and outcomes using linear regression, including adjustments for total intracranial volume and scanner/clinic information (basic model), age, sex, ethnicity, education, socioeconomic position, alcohol, body mass index, and smoking (fully adjusted model). Interactions between serology measures and apolipoprotein E (APOE) genotype were tested. Findings were meta-analyzed across cohorts (Nmain = 2632; NAPOE-interaction = 1810). RESULTS Seropositivity to John Cunningham virus associated with smaller brain volumes in basic models (β = -3.89 mL [-5.81, -1.97], Padjusted < 0.05); these were largely attenuated in fully adjusted models (β = -1.59 mL [-3.55, 0.36], P = 0.11). No other relationships were robust to multiple testing corrections and sensitivity analyses, but several suggestive associations were observed. DISCUSSION We did not find clear evidence for relationships between common infections and markers of dementia risk. Some suggestive findings warrant testing for replication.
Collapse
Affiliation(s)
- Rebecca E. Green
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| | - Carole H. Sudre
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Department of Medical Physics and Biomedical EngineeringCentre for Medical Image Computing (CMIC)University College London (UCL)LondonUK
| | - Charlotte Warren‐Gash
- Faculty of Epidemiology and Population HealthLondon School of Hygiene and Tropical MedicineLondonUK
| | - Julia Butt
- Division of Infections and Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Tim Waterboer
- Division of Infections and Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Alun D. Hughes
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| | | | - Marcus Richards
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| | - Nish Chaturvedi
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| | - Dylan M. Williams
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
| |
Collapse
|
5
|
Vehreschild MJGT, Atanasov P, Yurko K, Oancea C, Popov G, Smesnoi V, Placinta G, Kohlhof H, Vitt D, Peelen E, Mihajlović J, Muehler AR. Safety and Efficacy of Vidofludimus Calcium in Patients Hospitalized with COVID-19: A Double-Blind, Randomized, Placebo-Controlled, Phase 2 Trial. Infect Dis Ther 2022; 11:2159-2176. [PMID: 36242741 PMCID: PMC9568890 DOI: 10.1007/s40121-022-00690-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Vidofludimus calcium has shown anti-inflammatory effects in clinical trials of autoimmune diseases and recently demonstrated antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We performed a double-blind, randomized, placebo-controlled, phase 2 trial to evaluate the safety and efficacy of vidofludimus calcium in patients hospitalized for coronavirus disease 2019 (COVID-19) in Europe and the USA. Methods Patients aged 18 years or older who positive for COVID-19 were randomized (1:1) to receive placebo or 45 mg vidofludimus calcium for 14 days with both groups receiving standard-of-care treatment. The primary endpoint was the need for invasive ventilation after 28 days (ClinicalTrials.gov NCT04379271; EudraCT 2020-001264-28). Results Between June 12, 2020 and December 10, 2020, a total of 223 were randomized to receive either placebo (n = 112) or vidofludimus calcium (n = 111); three patients withdrew consent and were not treated. Eight (9%) patients in the placebo group and 12 (11%) patients in the vidofludimus calcium group needed invasive ventilation during the 28-day study period, which was lower than the assumed rate of 40%. Time to clinical improvement was shorter by approximately 1 day in the vidofludimus calcium group (15.0 days [90% CI 14.8–15.9]) compared to the placebo group (15.9 days [90% CI 14.9–19.9]). This effect was greatest in patients who initiated therapy within 9 days of symptom onset (3.8 days shorter in the vidofludimus calcium group). Higher trough concentrations of vidofludimus calcium were associated with quicker time to clinical recovery. The rate and timing of appearance of anti-SARS-CoV-2 antibodies were not different between groups. Serious adverse events occurred in 4 (4%) patients in the placebo group and 2 (2%) patients in the vidofludimus calcium group; treatment-emergent adverse events of increased severity related to COVID-19 occurred in 13 (12%) patients in the placebo group and 8 (7%) patients in the vidofludimus calcium group. Overall mortality was low (2%). Conclusions These findings support vidofludimus calcium being safe and well tolerated in patients with COVID-19. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-022-00690-0.
Collapse
Affiliation(s)
- Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, Medizinische Klinik II, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Petar Atanasov
- Clinic of Internal Diseases, UMHATEM "N.I.Pirogov" EAD, 21 Gen. Totleben Blvd., 1606, Sofia, Bulgaria
| | - Kateryna Yurko
- Infectious Diseases, Kharkiv National Medical University, 4 Nauki Avenue, Kharkiv, 61022, Ukraine
| | - Cristian Oancea
- University of Medicine and Pharmacy "Victor Babeş" Timişoara, Gh. Adam Street No 13, 300173, Timişoara, Romania
| | - Georgi Popov
- Clinic of Infectious Disease, Military Medical Academy-Sofia, 3, "St. Georgi Sofiiski" Str., 1606, Sofia, Bulgaria
| | - Valentina Smesnoi
- PMSI Clinical Hospital of Infectious Diseases "Toma Ciorba", Section 3, Bulevardul Ştefan Cel Mare şi Sfânt, Nr 163, 2004, Chişinău, Moldova
| | - Gheorghe Placinta
- PMSI Clinical Hospital of Infectious Diseases "Toma Ciorba", Section 4, Bulevardul Ştefan Cel Mare şi Sfânt, nr 163, 2004, Chişinău, Moldova
| | - Hella Kohlhof
- Immunic AG, Lochhamer Schlag 21, 82166, Gräfelfing, Germany
| | - Daniel Vitt
- Immunic AG, Lochhamer Schlag 21, 82166, Gräfelfing, Germany
| | - Evelyn Peelen
- Immunic AG, Lochhamer Schlag 21, 82166, Gräfelfing, Germany
| | | | | |
Collapse
|