1
|
Deng L, Feng L, Li J, Huang Y, Ou P, Shi L, Chen H, Zhang Y, Dai L, He Y, Wei C, Chen H, Wang J, Li L, Liu C. Effects of trace element dysregulation on brain structure and function in spinocerebellar Ataxia type 3. Neurobiol Dis 2025; 207:106816. [PMID: 39921113 DOI: 10.1016/j.nbd.2025.106816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), a neurodegenerative disorder caused by excess CAG repeats in the ATXN3 gene, leads to progressive cerebellar ataxia and other symptoms. The results of previous studies suggest that trace element dysregulation contributes to neurodegenerative disorder onset. Here, we investigated the relationships of trace element dysregulation with CAG repeat length, clinical severity, and brain structural and functional connectivity in 45 patients with SCA3 and 44 healthy controls (HCs). Blood levels of lithium (Li), selenium (Se), and copper (Cu) were significantly lower in patients with SCA3 than in HCs; Li and Se levels were negatively correlated with CAG repeat length, especially in the manifest subgroup. Diffusion tensor imaging combined with resting-state functional magnetic resonance imaging revealed that Li levels were negatively correlated with fractional anisotropy in the white matter (WM) of bilateral frontal and parietal regions; tractography mapping showed disorder structural connectivity of Li-associated region nerve fiber pathways in patients with SCA3. Dynamic causal modeling analyses showed bidirectional causal connectivity from the inferior parietal lobule(IPL) to the cerebellum was significantly correlated with the blood level of Li in patients with SCA3. Time series correlation-based functional connectivity analysis revealed that the intrinsic connectivities of the bilateral dorsal premotor cortex(PMd) and IPL with local cerebellar regions were significantly weaker in patients with SCA3 than in HCs. Our results suggest that trace element dysregulation, especially Li deficiency, induces brain alterations and clinical manifestations in patients with SCA3; Li supplementation may be beneficial for WM or astrocytes in this patient population.
Collapse
Affiliation(s)
- LiHua Deng
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liu Feng
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China; Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - JingWen Li
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - YongHua Huang
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - PeiLing Ou
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - LinFeng Shi
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Chen
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - YuHan Zhang
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - LiMeng Dai
- Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuan He
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chen Wei
- MR Research Collaboration Teams, Siemens Healthineers Ltd., Guangzhou, China
| | - HuaFu Chen
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Wang
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Leinian Li
- School of Psychology, Shandong Normal University, Jinan, China.
| | - Chen Liu
- 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
2
|
Soto-Piña AE, Pulido-Alvarado CC, Dulski J, Wszolek ZK, Magaña JJ. Specific Biomarkers in Spinocerebellar Ataxia Type 3: A Systematic Review of Their Potential Uses in Disease Staging and Treatment Assessment. Int J Mol Sci 2024; 25:8074. [PMID: 39125644 PMCID: PMC11311810 DOI: 10.3390/ijms25158074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is the most common type of disease related to poly-glutamine (polyQ) repeats. Its hallmark pathology is related to the abnormal accumulation of ataxin 3 with a longer polyQ tract (polyQ-ATXN3). However, there are other mechanisms related to SCA3 progression that require identifying trait and state biomarkers for a more accurate diagnosis and prognosis. Moreover, the identification of potential pharmacodynamic targets and assessment of therapeutic efficacy necessitates valid biomarker profiles. The aim of this review was to identify potential trait and state biomarkers and their potential value in clinical trials. Our results show that, in SCA3, there are different fluid biomarkers involved in neurodegeneration, oxidative stress, metabolism, miRNA and novel genes. However, neurofilament light chain NfL and polyQ-ATXN3 stand out as the most prevalent in body fluids and SCA3 stages. A heterogeneity analysis of NfL revealed that it may be a valuable state biomarker, particularly when measured in plasma. Nonetheless, since it could be a more beneficial approach to tracking SCA3 progression and clinical trial efficacy, it is more convenient to perform a biomarker profile evaluation than to rely on only one.
Collapse
Affiliation(s)
- Alexandra E. Soto-Piña
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.E.S.-P.); (C.C.P.-A.)
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Caroline C. Pulido-Alvarado
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.E.S.-P.); (C.C.P.-A.)
| | - Jaroslaw Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA;
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-211 Gdansk, Poland
- Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., 80-462 Gdansk, Poland
| | | | - Jonathan J. Magaña
- Department of Genomic Medicine, Instituto Nacional de Rehabilitación—Luis Guillermo Ibarra, Ibarra, Ciudad de México 14389, Mexico;
- Department of Bioengineering, School of Engineering and Sciences, Tecnológico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| |
Collapse
|
3
|
Dong X, Liu B, Huang W, Chen H, Zhang Y, Yao Z, Shmuel A, Yang A, Dai Z, Ma G, Shu N. Disrupted cerebellar structural connectome in spinocerebellar ataxia type 3 and its association with transcriptional profiles. Cereb Cortex 2024; 34:bhae238. [PMID: 38850215 DOI: 10.1093/cercor/bhae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is primarily characterized by progressive cerebellar degeneration, including gray matter atrophy and disrupted anatomical and functional connectivity. The alterations of cerebellar white matter structural network in SCA3 and the underlying neurobiological mechanism remain unknown. Using a cohort of 20 patients with SCA3 and 20 healthy controls, we constructed cerebellar structural networks from diffusion MRI and investigated alterations of topological organization. Then, we mapped the alterations with transcriptome data from the Allen Human Brain Atlas to identify possible biological mechanisms for regional selective vulnerability to white matter damage. Compared with healthy controls, SCA3 patients exhibited reduced global and nodal efficiency, along with a widespread decrease in edge strength, particularly affecting edges connected to hub regions. The strength of inter-module connections was lower in SCA3 group and negatively correlated with the Scale for the Assessment and Rating of Ataxia score, International Cooperative Ataxia Rating Scale score, and cytosine-adenine-guanine repeat number. Moreover, the transcriptome-connectome association study identified the expression of genes involved in synapse-related and metabolic biological processes. These findings suggest a mechanism of white matter vulnerability and a potential image biomarker for the disease severity, providing insights into neurodegeneration and pathogenesis in this disease.
Collapse
Affiliation(s)
- Xinyi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- BABRI Centre, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
| | - Bing Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong Province, 250021, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- BABRI Centre, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- Department of Systems Science, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
| | - Haojie Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- BABRI Centre, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
| | - Yunhao Zhang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Zeshan Yao
- Institute of Biomedical Engineering, Jingjinji National Center of Technology Innovation, Building 9, No. 6 Dongsheng Science Park North Street, Haidian District, Beijing 100094, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, 3801 University, Room NW261, Montreal, QC, Canada H3A 2B4
- Departments of Neurology and Neurosurgery, Physiology, and Biomedical Engineering, 3801 University, Room NW261, Montreal, QC, Canada H3A 2B4
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Zhengjia Dai
- Department of Psychology, Sun Yat-sen University, 132 Outer Ring East Road, Panyu District, Guangzhou, Guangdong Province, 510275, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- BABRI Centre, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 19 Xiejiekouwai Street, Haidian District, Beijing 100875, China
| |
Collapse
|
4
|
Putka AF, Mato JP, McLoughlin HS. Myelinating Glia: Potential Therapeutic Targets in Polyglutamine Spinocerebellar Ataxias. Cells 2023; 12:601. [PMID: 36831268 PMCID: PMC9953858 DOI: 10.3390/cells12040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Human studies, in combination with animal and cellular models, support glial cells as both major contributors to neurodegenerative diseases and promising therapeutic targets. Among glial cells, oligodendrocytes and Schwann cells are the myelinating glial cells of the central and peripheral nervous system, respectively. In this review, we discuss the contributions of these central and peripheral myelinating glia to the pathomechanisms of polyglutamine (polyQ) spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17. First, we highlight the function of oligodendrocytes in healthy conditions and how they are disrupted in polyQ SCA patients and diseased model systems. We then cover the role of Schwann cells in peripheral nerve function and repair as well as their possible role in peripheral neuropathy in polyQ SCAs. Finally, we discuss potential polyQ SCA therapeutic interventions in myelinating glial.
Collapse
Affiliation(s)
- Alexandra F. Putka
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Juan P. Mato
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|