1
|
Lei M, Wan H, Song J, Lu Y, Chang R, Wang H, Zhou H, Zhang X, Liu C, Qu X. Programmable Electro-Assembly of Collagen: Constructing Porous Janus Films with Customized Dual Signals for Immunomodulation and Tissue Regeneration in Periodontitis Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305756. [PMID: 38189598 PMCID: PMC10987108 DOI: 10.1002/advs.202305756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Currently available guided bone regeneration (GBR) films lack active immunomodulation and sufficient osteogenic ability- in the treatment of periodontitis, leading to unsatisfactory treatment outcomes. Challenges remain in developing simple, rapid, and programmable manufacturing methods for constructing bioactive GBR films with tailored biofunctional compositions and microstructures. Herein, the controlled electroassembly of collagen under the salt effect is reported, which enables the construction of porous films with precisely tunable porous structures (i.e., porosity and pore size). In particular, bioactive salt species such as the anti-inflammatory drug diclofenac sodium (DS) can induce and customize porous structures while enabling the loading of bioactive salts and their gradual release. Sequential electro-assembly under pre-programmed salt conditions enables the manufacture of a Janus composite film with a dense and DS-containing porous layer capable of multiple functions in periodontitis treatment, which provides mechanical support, guides fibrous tissue growth, and acts as a barrier preventing its penetration into bone defects. The DS-containing porous layer delivers dual bio-signals through its morphology and the released DS, inhibiting inflammation and promoting osteogenesis. Overall, this study demonstrates the potential of electrofabrication as a customized manufacturing platform for the programmable assembly of collagen for tailored functions to adapt to specific needs in regenerative medicine.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Haoran Wan
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Jia Song
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Yanhui Lu
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Ronghang Chang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Honglei Wang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Hang Zhou
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell MetabolismEast China University of Science and TechnologyShanghai200237China
- Wenzhou Institute of Shanghai UniversityWenzhou325000China
| |
Collapse
|
2
|
Lei M, Liao H, Wang S, Zhou H, Zhu J, Wan H, Payne GF, Liu C, Qu X. Electro-Sorting Create Heterogeneity: Constructing A Multifunctional Janus Film with Integrated Compositional and Microstructural Gradients for Guided Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307606. [PMID: 38225697 DOI: 10.1002/advs.202307606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/25/2023] [Indexed: 01/17/2024]
Abstract
Biology remains the envy of flexible soft matter fabrication because it can satisfy multiple functional needs by organizing a small set of proteins and polysaccharides into hierarchical systems with controlled heterogeneity in composition and microstructure. Here, it is reported that controlled, mild electronic inputs (<10 V; <20 min) induce a homogeneous gelatin-chitosan mixture to undergo sorting and bottom-up self-assembly into a Janus film with compositional gradient (i.e., from chitosan-enriched layer to chitosan/gelatin-contained layer) and tunable dense-porous gradient microstructures (e.g., porosity, pore size, and ratio of dense to porous layers). This Janus film performs is shown multiple functions for guided bone regeneration: the integration of compositional and microstructural features confers flexible mechanics, asymmetric properties for interfacial wettability, molecular transport (directional growth factor release), and cellular responses (prevents fibroblast infiltration but promotes osteoblast growth and differentiation). Overall, this work demonstrates the versatility of electrofabrication for the customized manufacturing of functional gradient soft matter.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haitao Liao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shijia Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hang Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianwei Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haoran Wan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Biomedical Device Institute, 5118 A. James Clark Hall, College Park, Maryland, 20742, USA
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of materials science and engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Ino K, Utagawa Y, Shiku H. Microarray-Based Electrochemical Biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:317-338. [PMID: 37306698 DOI: 10.1007/10_2023_229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microarrays are widely utilized in bioanalysis. Electrochemical biosensing techniques are often applied in microarray-based assays because of their simplicity, low cost, and high sensitivity. In such systems, the electrodes and sensing elements are arranged in arrays, and the target analytes are detected electrochemically. These sensors can be utilized for high-throughput bioanalysis and the electrochemical imaging of biosamples, including proteins, oligonucleotides, and cells. In this chapter, we summarize recent progress on these topics. We categorize electrochemical biosensing techniques for array detection into four groups: scanning electrochemical microscopy, electrode arrays, electrochemiluminescence, and bipolar electrodes. For each technique, we summarize the key principles and discuss the advantages, disadvantages, and bioanalysis applications. Finally, we present conclusions and perspectives about future directions in this field.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
| | - Yoshinobu Utagawa
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
4
|
Cassel de Camps C, Mok S, Ashby E, Li C, Lépine P, Durcan TM, Moraes C. Compressive molding of engineered tissues via thermoresponsive hydrogel devices. LAB ON A CHIP 2023; 23:2057-2067. [PMID: 36916609 DOI: 10.1039/d3lc00007a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biofabrication of tissues requires sourcing appropriate combinations of cells, and then arranging those cells into a functionally-useful construct. Recently, organoids with diverse cell populations have shown great promise as building blocks from which to assemble more complex structures. However, organoids typically adopt spherical or uncontrolled morphologies, which intrinsically limit the tissue structures that can be produced using this bioassembly technique. Here, we develop microfabricated smart hydrogel platforms in thermoresponsive poly(N-isopropylacrylamide) to compressively mold microtissues such as spheroids or organoids into customized forms, on demand. These Compressive Hydrogel Molders (CHyMs) compact at cell culture temperatures to force loaded tissues into a new shape, and then expand to release the tissues for downstream applications. As a first demonstration, breast cancer spheroids were biaxially compacted in cylindrical cavities, and uniaxially compacted in rectangular ones. Spheroid shape changes persisted after the tissues were released from the CHyMs. We then demonstrate long-term molding of spherical brain organoids in ring-shaped CHyMs over one week. Fused bridges formed only when brain organoids were encased in Matrigel, and the resulting ring-shaped organoids expressed tissue markers that correspond with expected differentiation profiles. These results demonstrate that tissues differentiate appropriately even during long-term molding in a CHyM. This platform hence provides a new tool to shape pre-made tissues as desired, via temporary compression and release, allowing an exploration of alternative organoid geometries as building blocks for bioassembly applications.
Collapse
Affiliation(s)
| | - Stephanie Mok
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
| | - Emily Ashby
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
| | - Chen Li
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
| | - Paula Lépine
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montréal, H3A 2B4 QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montréal, H3A 2B4 QC, Canada
| | - Christopher Moraes
- Department of Biomedical Engineering, McGill University, Montréal, H3A 2B4 QC, Canada.
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, H4A 3J1, QC, Canada
| |
Collapse
|
5
|
Utagawa Y, Ino K, Kumagai T, Hiramoto K, Takinoue M, Nashimoto Y, Shiku H. Electrochemical Glue for Binding Chitosan–Alginate Hydrogel Fibers for Cell Culture. MICROMACHINES 2022; 13:mi13030420. [PMID: 35334714 PMCID: PMC8952256 DOI: 10.3390/mi13030420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
Three-dimensional organs and tissues can be constructed using hydrogels as support matrices for cells. For the assembly of these gels, chemical and physical reactions that induce gluing should be induced locally in target areas without causing cell damage. Herein, we present a novel electrochemical strategy for gluing hydrogel fibers. In this strategy, a microelectrode electrochemically generated HClO or Ca2+, and these chemicals were used to crosslink chitosan–alginate fibers fabricated using interfacial polyelectrolyte complexation. Further, human umbilical vein endothelial cells were incorporated into the fibers, and two such fibers were glued together to construct “+”-shaped hydrogels. After gluing, the hydrogels were embedded in Matrigel and cultured for several days. The cells spread and proliferated along the fibers, indicating that the electrochemical glue was not toxic toward the cells. This is the first report on the use of electrochemical glue for the assembly of hydrogel pieces containing cells. Based on our results, the electrochemical gluing method has promising applications in tissue engineering and the development of organs on a chip.
Collapse
Affiliation(s)
- Yoshinobu Utagawa
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan; (Y.U.); (T.K.); (K.H.)
| | - Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan;
- Correspondence: (K.I.); (H.S.)
| | - Tatsuki Kumagai
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan; (Y.U.); (T.K.); (K.H.)
| | - Kaoru Hiramoto
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan; (Y.U.); (T.K.); (K.H.)
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Yokohama 226-8502, Japan;
| | - Yuji Nashimoto
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan;
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan;
- Correspondence: (K.I.); (H.S.)
| |
Collapse
|
6
|
Patterson C, Dietrich B, Wilson C, Mount AR, Adams DJ. Electrofabrication of large volume di- and tripeptide hydrogels via hydroquinone oxidation. SOFT MATTER 2022; 18:1064-1070. [PMID: 35022641 DOI: 10.1039/d1sm01626a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fabrication of protected peptide-based hydrogels on electrode surfaces can be achieved by employing the electrochemical oxidation of hydroquinone to benzoquinone, liberating protons at the electrode-solution interface. The localised reduction in pH below the dipeptide gelator molecules pKa initiates the neutralisation, self-assembly and formation of self-supporting hydrogels exclusively at the electrode surface. Previous examples have been on a nanometre to millimetre scale, using deposition times ranging from seconds to minutes. However, the maximum size to which these materials can grow and their subsequent mechanical properties have not yet been investigated. Here, we report the fabrication of the largest reported di- and tri-peptide based hydrogels using this electrochemical method, employing deposition times of two to five hours. To overcome the oxidation of hydroquinone in air, the fabrication process was performed under an inert nitrogen atmosphere. We show that this approach can be used to form multilayer gels, with the mechanical properties of each layer determined by gelator composition. We also describe examples where gel-to-crystal transitions and syneresis occur within the material.
Collapse
Affiliation(s)
| | - Bart Dietrich
- School of Chemistry, University of Glasgow, G12 8QQ, UK.
| | - Claire Wilson
- School of Chemistry, University of Glasgow, G12 8QQ, UK.
| | - Andrew R Mount
- EastCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
7
|
Maity C, Das N. Alginate-Based Smart Materials and Their Application: Recent Advances and Perspectives. Top Curr Chem (Cham) 2021; 380:3. [PMID: 34812965 DOI: 10.1007/s41061-021-00360-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Nature produces materials using available molecular building blocks following a bottom-up approach. These materials are formed with great precision and flexibility in a controlled manner. This approach offers the inspiration for manufacturing new artificial materials and devices. Synthetic artificial materials can find many important applications ranging from personalized therapeutics to solutions for environmental problems. Among these materials, responsive synthetic materials are capable of changing their structure and/or properties in response to external stimuli, and hence are termed "smart" materials. Herein, this review focuses on alginate-based smart materials and their stimuli-responsive preparation, fragmentation, and applications in diverse fields from drug delivery and tissue engineering to water purification and environmental remediation. In the first part of this report, we review stimuli-induced preparation of alginate-based materials. Stimuli-triggered decomposition of alginate materials in a controlled fashion is documented in the second part, followed by the application of smart alginate materials in diverse fields. Because of their biocompatibility, easy accessibility, and simple techniques of material formation, alginates can provide solutions for several present and future problems of humankind. However, new research is needed for novel alginate-based materials with new functionalities and well-defined properties for targeted applications.
Collapse
Affiliation(s)
- Chandan Maity
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Nikita Das
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
8
|
Utagawa Y, Hiramoto K, Nashimoto Y, Ino K, Shiku H. In vitro electrochemical assays for vascular cells and organs. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yoshinobu Utagawa
- Graduate School of Environmental Studies Tohoku University Aoba‐ku Sendai Japan
| | - Kaoru Hiramoto
- Graduate School of Environmental Studies Tohoku University Aoba‐ku Sendai Japan
| | - Yuji Nashimoto
- Frontier Research Institute for Interdisciplinary Sciences Tohoku University Aoba‐ku Sendai Japan
- Graduate School of Engineering Tohoku University Aoba‐ku Sendai Japan
| | - Kosuke Ino
- Graduate School of Engineering Tohoku University Aoba‐ku Sendai Japan
| | - Hitoshi Shiku
- Graduate School of Engineering Tohoku University Aoba‐ku Sendai Japan
| |
Collapse
|
9
|
Abstract
INTRODUCTION The high failure rate in drug discovery remains a costly and time-consuming challenge. Improving the odds of success in the early steps of drug development requires disease models with high biological relevance for biomarker discovery and drug development. The adoption of three-dimensional (3D) cell culture systems over traditional monolayers in cell-based assays is considered a promising step toward improving the success rate in drug discovery. AREAS COVERED In this article, the author focuses on new technologies for 3D cell culture and their applications in cancer drug discovery. Besides the most common 3D cell-culture systems for tumor cells, the article emphasizes the need for 3D cell culture technologies that can mimic the complex tumor microenvironment and cancer stem cell niche. EXPERT OPINION There has been a rapid increase in 3D cell culture technologies in recent years in an effort to more closely mimic in vivo physiology. Each 3D cell culture system has its own strengths and weaknesses with regard to in vivo tumor growth and the tumor microenvironment. This requires careful consideration of which 3D cell culture system is chosen for drug discovery and should be based on factors like drug target and tumor origin.
Collapse
Affiliation(s)
- Sigrid A Langhans
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE
| |
Collapse
|
10
|
Ino K, Tamura A, Hiramoto K, Fukuda MT, Nashimoto Y, Shiku H. Electrodeposition of Thiolated Polymer-based Hydrogels via Disulfide Formation Using Electrogenerated Benzoquinone. CHEM LETT 2021. [DOI: 10.1246/cl.200732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Ayako Tamura
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kaoru Hiramoto
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Mika T. Fukuda
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuji Nashimoto
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
11
|
Yan K, Yang C, Zhong W, Lu Z, Li X, Shi X, Wang D. Wire templated electrodeposition of vessel-like structured chitosan hydrogel by using a pulsed electrical signal. SOFT MATTER 2020; 16:9471-9478. [PMID: 32955063 DOI: 10.1039/d0sm01134g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, by performing a templated electrodeposition process with an oscillating electrical signal stimulation, a vessel-like structured chitosan hydrogel (diameter about 0.4 mm) was successfully prepared in the absence of salt conditions. Experimental results demonstrated that the hydrogel growth (e.g. the thickness) is linearly correlated with the imposed charge transfer and can be well quantified by using a theoretical moving front model. Morphological observations indicated that the heterogeneous multilayer structure was spatially and temporally controlled by an externally employed electrical signal sequence while the channel structure could be determined by the shaped electrode. Moreover, the oscillating ON-OFF cycles were proved to strongly affect the film structure, leading to a more compact hydrogel coating with a lower water content, higher crystallinity, complex layer architecture and relatively strong mechanical properties that could be easily peeled off as a free-standing hollow tube. Importantly, all the experiments were conducted under mild conditions that allowed additional enhancing materials to be added in to further improve the mechanical and/or biological properties. Thus, this work advances a very promising self-assembly technology for the construction of a multi-functional hydrogel coating and artificial blood vessel regeneration.
Collapse
Affiliation(s)
- Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China. and School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China.
| | - Chenguang Yang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| | - Weibin Zhong
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| | - Zhentan Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| | - Xiufang Li
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China.
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|