1
|
Pereira-Vieira J, Granja S, Celeiro SP, Barbosa-Matos C, Preto A, Queirós O, Ko YH, Casal M, Baltazar F. 3-Bromopyruvate boosts the effect of chemotherapy in acute myeloid leukemia by a pro-oxidant mechanism. Free Radic Biol Med 2025; 234:192-202. [PMID: 40222425 DOI: 10.1016/j.freeradbiomed.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Acute myeloid leukemia (AML) comprises a diverse group of blood cancers with varying genetic, phenotypic, and clinical traits, making development of targeted therapy challenging. Metabolic reprogramming in AML has been described as relevant for chemotherapy effectiveness. 3-Bromopyruvate (3-BP) is an anticancer agent that undermines energy metabolism of cancer cells. However, the effect of 3-BP in hematologic malignancies, such as AML, needs further investigation. Thus, we aimed to explore 3-BP as a chemo-sensitizing agent in AML. Different approaches of combining 3-BP with classical chemotherapy (daunorubicin and cytarabin) were tested in diverse AML cell lines. Cell sensitivity to the different drug combinations was analyzed by Trypan blue staining. The effect of pre-treatment with a non-toxic concentration of 3-BP was assessed on the AML cell metabolic profile (Western blot and immunofluorescence), mitochondrial activity (cytometry flow), and antioxidant capacity (colorimetric detection kit). KG-1 and MOLM13 cells showed increased sensitivity to chemotherapy (decreased EC50 values) after exposure to a non-toxic concentration (5 μM) of 3-BP. In both cell lines, 5 μM 3-BP decreased glucose consumption without changing extracellular lactate levels. 5 μM 3-BP treatment increased reactive oxygen species levels and decreased cell antioxidant capacity by depleting reduced glutathione levels in both KG-1 and MOLM13 cells. Our results demonstrate that non-toxic concentrations of 3-BP enhance the effect of classical chemotherapy in AML cells through a pro-oxidant mechanism. These data unveiled a new approach for AML treatment, using 3-BP or other pro-oxidant agents as co-adjuvants of chemotherapy, subsiding chemotherapy-induced side effects.
Collapse
Affiliation(s)
- Joana Pereira-Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal; Department of Pathological, Cytological and Thanatological Anatomy, ESS|P.PORTO, 4200-072, Porto, Portugal.
| | - Sónia Pires Celeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Ana Preto
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057, Braga, Portugal; IBS-Institute of Science and Innovation for Bio-Sustainability, University of Minho, 4710-057, Braga, Portugal.
| | - Odília Queirós
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116, Gandra, Portugal.
| | - Young Hee Ko
- KoDiscovery, LLC, Institute of Marine and Environmental Technology (IMET) Center, 701 East Pratt Street, Baltimore, MD, 21202, USA.
| | - Margarida Casal
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057, Braga, Portugal; IBS-Institute of Science and Innovation for Bio-Sustainability, University of Minho, 4710-057, Braga, Portugal.
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
2
|
Shi H, Wang B, Ma H, Li Y, Du J, Zhang B, Gao Y, Liu Y, Wu C. Preparation of Biomimetic Selenium-Baicalein Nanoparticles and Their Targeted Therapeutic Application in Nonsmall Cell Lung Cancer. Mol Pharm 2024; 21:4476-4489. [PMID: 39106303 DOI: 10.1021/acs.molpharmaceut.4c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
In this study, we prepared bionic selenium-baicalein nanoparticles (ACM-SSe-BE) for the targeted treatment of nonsmall cell lung cancer. Due to the coating of the A549 membrane, the system has homologous targeting capabilities, allowing for the preparation of target tumor cells. The borate ester bond between selenium nanoparticles (SSe) and baicalein (BE) is pH-sensitive and can break under acidic conditions in the tumor microenvironment to achieve the targeted release of BE at the tumor site. Moreover, SSe further enhances the antitumor effect of BE by increasing the production of ROS in tumor cells. Transmission electron microscopy (TEM) images and dynamic light scattering (DLS) showed that the ACM-SSe-BE had a particle size of approximately 155 ± 2 nm. FTIR verified the successful coupling of SSe and BE. In vitro release experiments indicated that the cumulative release of ACM-SSe-BE at pH 5.5 after 24 h was 69.39 ± 1.07%, which was less than the 20% release at pH 7.4, confirming the pH-sensitive release of BE in ACM-SSe-BE. Cell uptake experiments and in vivo imaging showed that ACM-SSe-BE had good targeting ability. The results of MTT, flow cytometry, Western blot, and cell immunofluorescence staining demonstrated that ACM-SSe-BE promoted A549 cell apoptosis and inhibited cell proliferation. The in vivo antitumor results were consistent with those of the cell experiments. These results clearly suggested that ACM-SSe-BE will be a promising bionic nanosystem for the treatment of nonsmall cell lung cancer.
Collapse
Affiliation(s)
- Huan Shi
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning 121001, China
| | - Biaobiao Wang
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning 121001, China
| | - Huilin Ma
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning 121001, China
| | - Yunmei Li
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning 121001, China
| | - Jiaqun Du
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning 121001, China
| | - Bo Zhang
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning 121001, China
| | - Yu Gao
- Department of Medical Oncology, the First Affiliated Hospital of Jinzhou Medical University, the Fifth Section of Renmin Street, Guta District, Jinzhou, Liaoning 121001, China
| | - Ying Liu
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning 121001, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, 40 Songpo Road, Linghe District, Jinzhou, Liaoning 121001, China
| |
Collapse
|
3
|
Zhang Y, Tong L, Ma L, Ye H, Zeng S, Zhang S, Ding Y, Wang W, Bao T. Progress in The Research of Lactate Metabolism Disruption And Astrocyte-Neuron Lactate Shuttle Impairment in Schizophrenia: A Comprehensive Review. Adv Biol (Weinh) 2024; 8:e2300409. [PMID: 38596839 DOI: 10.1002/adbi.202300409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Indexed: 04/11/2024]
Abstract
Schizophrenia (SCZ) is a complex neuropsychiatric disorder widely recognized for its impaired bioenergy utilization. The astrocyte-neuron lactate shuttle (ANLS) plays a critical role in brain energy supply. Recent studies have revealed abnormal lactate metabolism in SCZ, which is associated with mitochondrial dysfunction, tissue hypoxia, gastric acid retention, oxidative stress, neuroinflammation, abnormal brain iron metabolism, cerebral white matter hypermetabolic activity, and genetic susceptibility. Furthermore, astrocytes, neurons, and glutamate abnormalities are prevalent in SCZ with abnormal lactate metabolism, which are essential components for maintaining ANLS in the brain. Therefore, an in-depth study of the pathophysiological mechanisms of ANLS in SCZ with abnormal lactate metabolism will contribute to a better understanding of the pathogenesis of SCZ and provide new ideas and approaches for the diagnosis and treatment of SCZ.
Collapse
Affiliation(s)
- Yingying Zhang
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Liang Tong
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Li Ma
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Hong Ye
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Shue Zeng
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Shaochuan Zhang
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Yu Ding
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, P. R. China
| | - Weiwei Wang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, P. R. China
| | - Tianhao Bao
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| |
Collapse
|
4
|
Ramos R, Moura CS, Costa M, Lamas NJ, Correia R, Garcez D, Pereira JM, Sousa C, Vale N. Enhancing Lung Cancer Care in Portugal: Bridging Gaps for Improved Patient Outcomes. J Pers Med 2024; 14:446. [PMID: 38793028 PMCID: PMC11121920 DOI: 10.3390/jpm14050446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Lung cancer has the highest incidence and cancer-related mortality worldwide. In Portugal, it ranks as the fourth most common cancer, with nearly 6000 new cases being diagnosed every year. Lung cancer is the main cause of cancer-related death among males and the third cause of cancer-related death in females. Despite the globally accepted guidelines and recommendations for what would be the ideal path for a lung cancer patient, several challenges occur in real clinical management across the world. The recommendations emphasize the importance of adequate screening of high-risk individuals, a precise tumour biopsy, and an accurate final diagnosis to confirm the neoplastic nature of the nodule. A detailed histological classification of the lung tumour type and a comprehensive molecular characterization are of utmost importance for the selection of an efficacious and patient-directed therapeutic approach. However, in the context of the Portuguese clinical organization and the national healthcare system, there are still several gaps in the ideal pathway for a lung cancer patient, involving aspects ranging from the absence of a national lung cancer screening programme through difficulties in histological diagnosis and molecular characterization to challenges in therapeutic approaches. In this manuscript, we address the most relevant weaknesses, presenting several proposals for potential solutions to improve the management of lung cancer patients, helping to decisively improve their overall survival and quality of life.
Collapse
Affiliation(s)
- Raquel Ramos
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
| | - Conceição Souto Moura
- Pathology Laboratory, Unilabs Portugal, Rua Manuel Pinto de Azevedo 173, 4100-321 Porto, Portugal;
| | - Mariana Costa
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
| | - Nuno Jorge Lamas
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
- Anatomic Pathology Service, Pathology Department, Centro Hospitalar Universitário de Santo António (CHUdSA), Largo Professor Abel Salazar, 4099-001 Porto, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, Rua da Universidade, 4710-057 Braga, Portugal
| | - Renato Correia
- Technology & Innovation Department, Unilabs Portugal, Rua Manuel Pinto de Azevedo 173, 4100-321 Porto, Portugal; (R.C.); (D.G.)
| | - Diogo Garcez
- Technology & Innovation Department, Unilabs Portugal, Rua Manuel Pinto de Azevedo 173, 4100-321 Porto, Portugal; (R.C.); (D.G.)
| | - José Miguel Pereira
- Radiology Department, Unilabs Portugal, Rua de Diogo Botelho 485, 4150-255 Porto, Portugal;
| | - Carlos Sousa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
5
|
Pereira-Vieira J, Weber DD, Silva S, Barbosa-Matos C, Granja S, Reis RM, Queirós O, Ko YH, Kofler B, Casal M, Baltazar F. Glucose Metabolism as a Potential Therapeutic Target in Cytarabine-Resistant Acute Myeloid Leukemia. Pharmaceutics 2024; 16:442. [PMID: 38675105 PMCID: PMC11055074 DOI: 10.3390/pharmaceutics16040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Altered glycolytic metabolism has been associated with chemoresistance in acute myeloid leukemia (AML). However, there are still aspects that need clarification, as well as how to explore these metabolic alterations in therapy. In the present study, we aimed to elucidate the role of glucose metabolism in the acquired resistance of AML cells to cytarabine (Ara-C) and to explore it as a therapeutic target. Resistance was induced by stepwise exposure of AML cells to increasing concentrations of Ara-C. Ara-C-resistant cells were characterized for their growth capacity, genetic alterations, metabolic profile, and sensitivity to different metabolic inhibitors. Ara-C-resistant AML cell lines, KG-1 Ara-R, and MOLM13 Ara-R presented different metabolic profiles. KG-1 Ara-R cells exhibited a more pronounced glycolytic phenotype than parental cells, with a weaker acute response to 3-bromopyruvate (3-BP) but higher sensitivity after 48 h. KG-1 Ara-R cells also display increased respiration rates and are more sensitive to phenformin than parental cells. On the other hand, MOLM13 Ara-R cells display a glucose metabolism profile similar to parental cells, as well as sensitivity to glycolytic inhibitors. These results indicate that acquired resistance to Ara-C in AML may involve metabolic adaptations, which can be explored therapeutically in the AML patient setting who developed resistance to therapy.
Collapse
Affiliation(s)
- Joana Pereira-Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (J.P.-V.); (C.B.-M.); (S.G.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (D.D.W.); (B.K.)
| | - Sâmia Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil;
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (J.P.-V.); (C.B.-M.); (S.G.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (J.P.-V.); (C.B.-M.); (S.G.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, ESS|P.PORTO, 4200-072 Porto, Portugal
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (J.P.-V.); (C.B.-M.); (S.G.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil;
| | - Odília Queirós
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Young H. Ko
- KoDiscovery, LLC, Institute of Marine and Environmental Technology (IMET) Center, 701 East Pratt Street, Baltimore, MD 21202, USA;
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (D.D.W.); (B.K.)
| | - Margarida Casal
- Center of Molecular and Environmental Biology (CBMA), University of Minho, 4710-057 Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (J.P.-V.); (C.B.-M.); (S.G.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Xun Z, Li T, Xue X. The application strategy of liposomes in organ targeting therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1955. [PMID: 38613219 DOI: 10.1002/wnan.1955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 04/14/2024]
Abstract
Liposomes-microscopic phospholipid bubbles with bilayered membrane structure-have been a focal point in drug delivery research for the past 30 years. Current liposomes possess a blend of biocompatibility, drug loading efficiency, prolonged circulation and targeted delivery. Tailored liposomes, varying in size, charge, lipid composition, and ratio, have been developed to address diseases in specific organs, thereby enhancing drug circulation, accumulation at lesion sites, intracellular delivery, and treatment efficacy for various organ-specific diseases. For further successful development of this field, this review summarized liposomal strategies for targeting different organs in series of major human diseases, including widely studied cardiovascular diseases, liver and spleen immune diseases, chronic or acute kidney injury, neurodegenerative diseases, and organ-specific tumors. It highlights recent advances of liposome-mediated therapeutic agent delivery for disease intervention and organ rehabilitation, offering practical guidelines for designing organ-targeted liposomes. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Zengyu Xun
- State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, People's Republic of China
| | - Tianqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, People's Republic of China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Kanekura T. CD147/Basigin Is Involved in the Development of Malignant Tumors and T-Cell-Mediated Immunological Disorders via Regulation of Glycolysis. Int J Mol Sci 2023; 24:17344. [PMID: 38139173 PMCID: PMC10743398 DOI: 10.3390/ijms242417344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
CD147/Basigin, a transmembrane glycoprotein belonging to the immunoglobulin superfamily, is a multifunctional molecule with various binding partners. CD147 binds to monocarboxylate transporters (MCTs) and supports their expression on plasma membranes. MTC-1 and MCT-4 export the lactic acid that is converted from pyruvate in glycolysis to maintain the intracellular pH level and a stable metabolic state. Under physiological conditions, cellular energy production is induced by mitochondrial oxidative phosphorylation. Glycolysis usually occurs under anaerobic conditions, whereas cancer cells depend on glycolysis under aerobic conditions. T cells also require glycolysis for differentiation, proliferation, and activation. Human malignant melanoma cells expressed higher levels of MCT-1 and MCT-4, co-localized with CD147 on the plasma membrane, and showed an increased glycolysis rate compared to normal human melanocytes. CD147 silencing by siRNA abrogated MCT-1 and MCT-4 membrane expression and disrupted glycolysis, inhibiting cancer cell activity. Furthermore, CD147 is involved in psoriasis. MCT-1 was absent on CD4+ T cells in CD147-deficient mice. The naïve CD4+ T cells from CD147-deficient mice exhibited a low capacity to differentiate into Th17 cells. Imiquimod-induced skin inflammation was significantly milder in the CD147-deficient mice than in the wild-type mice. Overall, CD147/Basigin is involved in the development of malignant tumors and T-cell-mediated immunological disorders via glycolysis regulation.
Collapse
Affiliation(s)
- Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| |
Collapse
|