1
|
Spencer AP, Vilaça A, Xavier M, Santos R, Ionescu A, Lázaro M, Leiro V, Perlson E, Guimarães SC, Maoz BM, Pêgo AP. Engineered Chitosan-Derived Nanocarrier for Efficient siRNA Delivery to Peripheral and Central Neurons. Adv Healthc Mater 2025:e2500107. [PMID: 40364633 DOI: 10.1002/adhm.202500107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/17/2025] [Indexed: 05/15/2025]
Abstract
Gene therapy using small interfering RNA (siRNA) holds promise for treating neurological disorders by silencing specific genes, like the phosphatase and tensin homolog (PTEN) gene, which restricts axonal growth. Effective siRNA delivery to neurons, however, poses challenges due to premature nucleic acid degradation and unspecific delivery. Chitosan-based delivery systems, noted for their biocompatibility, face limitations such as low transfection efficiency and lack of neurotropism. Building on the previous successes with neuron-targeted DNA delivery using chitosan, a novel approach for siRNA delivery aimed at PTEN downregulation is proposed. This involves using thiolated trimethyl chitosan (TMCSH)-based siRNA nanoparticles functionalized with the neurotropic C-terminal fragment of the tetanus neurotoxin heavy chain (HC) for efficient delivery to peripheral and central neurons. These polyplexes demonstrate suitable physicochemical properties, biocompatibility, and no adverse effects on neuronal electrophysiology. Diverse neuronal models, including 3D ex vivo cultures and microfluidics, confirm the polyplexes' efficiency and neurospecificity. HC-functionalization significantly enhances neuronal binding, and live cell imaging reveals fivefold faster retrograde transport along axons. Furthermore, siRNA delivery targeting PTEN promoted axonal outgrowth in embryonic cortical neurons. In conclusion, the proposed polyplexes represent a promising platform for neuronal siRNA delivery, offering potential for clinical translation and therapeutic applications.
Collapse
Affiliation(s)
- Ana P Spencer
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Adriana Vilaça
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Miguel Xavier
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Rafael Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ariel Ionescu
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - María Lázaro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Victoria Leiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Eran Perlson
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sofia C Guimarães
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ben M Maoz
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Sagol Center for Regenerative Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana P Pêgo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Martins ASG, Reis SD, Benson E, Domingues MM, Cortinhas J, Vidal Silva JA, Santos SD, Santos NC, Pêgo AP, Moreno PMD. Enhancing Neuronal Cell Uptake of Therapeutic Nucleic Acids with Tetrahedral DNA Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309140. [PMID: 38342712 DOI: 10.1002/smll.202309140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/22/2023] [Indexed: 02/13/2024]
Abstract
The successful translation of therapeutic nucleic acids (NAs) for the treatment of neurological disorders depends on their safe and efficient delivery to neural cells, in particular neurons. DNA nanostructures can be a promising NAs delivery vehicle. Nonetheless, the potential of DNA nanostructures for neuronal cell delivery of therapeutic NAs is unexplored. Here, tetrahedral DNA nanostructures (TDN) as siRNA delivery scaffolds to neuronal cells, exploring the influence of functionalization with two different reported neuronal targeting ligands: C4-3 RNA aptamer and Tet1 peptide are investigated. Nanostructures are characterized in vitro, as well as in silico using molecular dynamic simulations to better understand the overall TDN structural stability. Enhancement of neuronal cell uptake of TDN functionalized with the C4-3 Aptamer (TDN-Apt), not only in neuronal cell lines but also in primary neuronal cell cultures is demonstrated. Additionally, TDN and TDN-Apt nanostructures carrying siRNA are shown to promote silencing in a process aided by chloroquine-induced endosomal disruption. This work presents a thorough workflow for the structural and functional characterization of the proposed TDN as a nano-scaffold for neuronal delivery of therapeutic NAs and for targeting ligands evaluation, contributing to the future development of new neuronal drug delivery systems based on DNA nanostructures.
Collapse
Affiliation(s)
- Ana S G Martins
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, INEB (Instituto Nacional de Engenharia Biomédica), Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, s/n, Porto, 4200-465, Portugal
| | - Sara D Reis
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, INEB (Instituto Nacional de Engenharia Biomédica), Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - Erik Benson
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Tomtebodavägen 23, Solna, 171 65, Sweden
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, 1649-028, Portugal
| | - João Cortinhas
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, INEB (Instituto Nacional de Engenharia Biomédica), Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - Joana A Vidal Silva
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, INEB (Instituto Nacional de Engenharia Biomédica), Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - Sofia D Santos
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, INEB (Instituto Nacional de Engenharia Biomédica), Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, 1649-028, Portugal
| | - Ana P Pêgo
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, INEB (Instituto Nacional de Engenharia Biomédica), Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| | - Pedro M D Moreno
- i3S (Instituto de Investigação e Inovação em Saúde), Universidade do Porto, INEB (Instituto Nacional de Engenharia Biomédica), Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
| |
Collapse
|
3
|
Fekete T, Mészáros M, Szegletes Z, Vizsnyiczai G, Zimányi L, Deli MA, Veszelka S, Kelemen L. Optically Manipulated Microtools to Measure Adhesion of the Nanoparticle-Targeting Ligand Glutathione to Brain Endothelial Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39018-39029. [PMID: 34397215 DOI: 10.1021/acsami.1c08454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Targeting nanoparticles as drug delivery platforms is crucial to facilitate their cellular entry. Docking of nanoparticles by targeting ligands on cell membranes is the first step for the initiation of cellular uptake. As a model system, we studied brain microvascular endothelial cells, which form the anatomical basis of the blood-brain barrier, and the tripeptide glutathione, one of the most effective targeting ligands of nanoparticles to cross the blood-brain barrier. To investigate this initial docking step between glutathione and the membrane of living brain endothelial cells, we applied our recently developed innovative optical method. We present a microtool, with a task-specific geometry used as a probe, actuated by multifocus optical tweezers to characterize the adhesion probability and strength of glutathione-coated surfaces to the cell membrane of endothelial cells. The binding probability of the glutathione-coated surface and the adhesion force between the microtool and cell membrane was measured in a novel arrangement: cells were cultured on a vertical polymer wall and the mechanical forces were generated laterally and at the same time, perpendicularly to the plasma membrane. The adhesion force values were also determined with more conventional atomic force microscopy (AFM) measurements using functionalized colloidal probes. The optical trapping-based method was found to be suitable to measure very low adhesion forces (≤ 20 pN) without a high level of noise, which is characteristic for AFM measurements in this range. The holographic optical tweezers-directed functionalized microtools may help characterize the adhesion step of nanoparticles initiating transcytosis and select ligands to target nanoparticles.
Collapse
Affiliation(s)
- Tamás Fekete
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
- Doctoral School in Multidisciplinary Medicine, University of Szeged, Szeged 6720, Hungary
| | - Mária Mészáros
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Zsolt Szegletes
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Gaszton Vizsnyiczai
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - László Zimányi
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Lóránd Kelemen
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| |
Collapse
|
4
|
Spencer AP, Torrado M, Custódio B, Silva-Reis SC, Santos SD, Leiro V, Pêgo AP. Breaking Barriers: Bioinspired Strategies for Targeted Neuronal Delivery to the Central Nervous System. Pharmaceutics 2020; 12:E192. [PMID: 32102252 PMCID: PMC7076453 DOI: 10.3390/pharmaceutics12020192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/01/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022] Open
Abstract
Central nervous system (CNS) disorders encompass a vast spectrum of pathological conditions and represent a growing concern worldwide. Despite the high social and clinical interest in trying to solve these pathologies, there are many challenges to bridge in order to achieve an effective therapy. One of the main obstacles to advancements in this field that has hampered many of the therapeutic strategies proposed to date is the presence of the CNS barriers that restrict the access to the brain. However, adequate brain biodistribution and neuronal cells specific accumulation in the targeted site also represent major hurdles to the attainment of a successful CNS treatment. Over the last few years, nanotechnology has taken a step forward towards the development of therapeutics in neurologic diseases and different approaches have been developed to surpass these obstacles. The versatility of the designed nanocarriers in terms of physical and chemical properties, and the possibility to functionalize them with specific moieties, have resulted in improved neurotargeted delivery profiles. With the concomitant progress in biology research, many of these strategies have been inspired by nature and have taken advantage of physiological processes to achieve brain delivery. Here, the different nanosystems and targeting moieties used to achieve a neuronal delivery reported in the open literature are comprehensively reviewed and critically discussed, with emphasis on the most recent bioinspired advances in the field. Finally, we express our view on the paramount challenges in targeted neuronal delivery that need to be overcome for these promising therapeutics to move from the bench to the bedside.
Collapse
Affiliation(s)
- Ana P. Spencer
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Marília Torrado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Beatriz Custódio
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sara C. Silva-Reis
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sofia D. Santos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P. Pêgo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Pavan C, Delle Piane M, Gullo M, Filippi F, Fubini B, Hoet P, Horwell CJ, Huaux F, Lison D, Lo Giudice C, Martra G, Montfort E, Schins R, Sulpizi M, Wegner K, Wyart-Remy M, Ziemann C, Turci F. The puzzling issue of silica toxicity: are silanols bridging the gaps between surface states and pathogenicity? Part Fibre Toxicol 2019; 16:32. [PMID: 31419990 PMCID: PMC6697921 DOI: 10.1186/s12989-019-0315-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Silica continues to represent an intriguing topic of fundamental and applied research across various scientific fields, from geology to physics, chemistry, cell biology, and particle toxicology. The pathogenic activity of silica is variable, depending on the physico-chemical features of the particles. In the last 50 years, crystallinity and capacity to generate free radicals have been recognized as relevant features for silica toxicity. The 'surface' also plays an important role in silica toxicity, but this term has often been used in a very general way, without defining which properties of the surface are actually driving toxicity. How the chemical features (e.g., silanols and siloxanes) and configuration of the silica surface can trigger toxic responses remains incompletely understood. MAIN BODY Recent developments in surface chemistry, cell biology and toxicology provide new avenues to improve our understanding of the molecular mechanisms of the adverse responses to silica particles. New physico-chemical methods can finely characterize and quantify silanols at the surface of silica particles. Advanced computational modelling and atomic force microscopy offer unique opportunities to explore the intimate interactions between silica surface and membrane models or cells. In recent years, interdisciplinary research, using these tools, has built increasing evidence that surface silanols are critical determinants of the interaction between silica particles and biomolecules, membranes, cell systems, or animal models. It also has become clear that silanol configuration, and eventually biological responses, can be affected by impurities within the crystal structure, or coatings covering the particle surface. The discovery of new molecular targets of crystalline as well as amorphous silica particles in the immune system and in epithelial lung cells represents new possible toxicity pathways. Cellular recognition systems that detect specific features of the surface of silica particles have been identified. CONCLUSIONS Interdisciplinary research bridging surface chemistry to toxicology is progressively solving the puzzling issue of the variable toxicity of silica. Further interdisciplinary research is ongoing to elucidate the intimate mechanisms of silica pathogenicity, to possibly mitigate or reduce surface reactivity.
Collapse
Affiliation(s)
- Cristina Pavan
- UCLouvain, Louvain centre for Toxicology and Applied Pharmacology (LTAP), Brussels, Belgium
| | - Massimo Delle Piane
- Bremen Center for Computational Material Science (BCCMS), Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | | | | | - Bice Fubini
- G. Scansetti Center, University of Torino, Turin, Italy
| | - Peter Hoet
- Department of Public Health and Primary Care, KU Leuven, Laboratory of Toxicology, Unit of Environment and Health, Leuven, Belgium
| | - Claire J. Horwell
- Institute of Hazard, Risk and Resilience, Department of Earth Sciences, Durham University, Durham, UK
| | - François Huaux
- UCLouvain, Louvain centre for Toxicology and Applied Pharmacology (LTAP), Brussels, Belgium
| | - Dominique Lison
- UCLouvain, Louvain centre for Toxicology and Applied Pharmacology (LTAP), Brussels, Belgium
| | - Cristina Lo Giudice
- UCLouvain, Institute of Biomolecular Science and Technology, NanoBioPhysics, Louvain-la-Neuve, Belgium
| | - Gianmario Martra
- Department of Chemistry and Nanostructured Interfaces and Surfaces –NIS Centre, University of Torino, Turin, Italy
| | - Eliseo Montfort
- Instituto de Tecnología Cerámica, Universitat Jaume I, Castellón, Spain
| | - Roel Schins
- IUF Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | | | - Michelle Wyart-Remy
- EUROSIL, European Association of industrial silica producers, Brussels, Belgium
| | - Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine, ITEM, Hannover, Germany
| | - Francesco Turci
- Department of Chemistry, G. Scansetti Center, University of Torino, Turin, Italy
| |
Collapse
|
6
|
Molecular Recognition Force Spectroscopy for Probing Cell Targeted Nanoparticles In Vitro. Methods Mol Biol 2018. [PMID: 30374877 DOI: 10.1007/978-1-4939-8894-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In the development and design of cell targeted nanoparticle-based systems the density of targeting moieties plays a fundamental role in allowing maximal cell-specific interaction. Here, we describe the use of molecular recognition force spectroscopy as a valuable tool for the characterization and optimization of targeted nanoparticles toward attaining cell-specific interaction. By tailoring the density of targeting moieties at the nanoparticle surface, one can correlate the unbinding event probability between nanoparticles tethered to an atomic force microscopy tip and cells to the nanoparticle vectoring capacity. This novel approach allows for a rapid and cost-effective design of targeted nanomedicines reducing the need for long and tedious in vitro tests.
Collapse
|
7
|
Pereira Gomes C, Leiro V, Ferreira Lopes CD, Spencer AP, Pêgo AP. Fine tuning neuronal targeting of nanoparticles by adjusting the ligand grafting density and combining PEG spacers of different length. Acta Biomater 2018; 78:247-259. [PMID: 30092376 DOI: 10.1016/j.actbio.2018.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
Abstract
Poly(ethylene glycol) (PEG) has been extensively used to coat the surface of nanocarriers to improve their physicochemical properties and allow the grafting of targeting moieties. Still, to date there is no common agreement on the ideal PEG coverage-density or length to be used for optimum vector performance. In this study, we aimed to investigate the impact of both PEG density and length on the vectoring capacity of neuron-targeted gene-carrying trimethyl chitosan nanoparticles. The non-toxic fragment from the tetanus toxin (HC) was coupled to a 5 kDa heterobifunctional PEG (HC-PEG5k) reactive for the thiol groups inserted into the polymer backbone and grafted at different densities onto the nanoparticles. Internalization and transfection studies on neuronal versus non-neuronal cell lines allowed to determine the PEG density of 2 mol% of PEG chains per mol of primary amine groups as the one with superior biological performance. To enhance HC exposure and maximize cell-nanoparticle specific interaction, NPs containing different ratios of HC-PEG5k and 2 kDa methoxy-PEG at the same grafting density were produced. By intercalating HC-PEG5k with methoxy-PEG2k we attained the best performance in terms of internalization (higher payload delivery into cells) and transfection efficiency, using twice lower amount of HC. This outcome highlights the need for fine-tuning of PEG-modified nanoparticles towards the achievement of optimal targeting. STATEMENT OF SIGNIFICANCE The amount and exposure of targeting moieties at a nanoparticle surface are critical parameters regarding the targeting potential of nanosized delivery vectors. However, to date, few studies have considered fundamental aspects impacting the ligand-receptor pair interaction, such as the effect of spacer chain length, flexibility or conformation. By optimizing the PEG spacer density and chain length grafted into nanoparticles, we were able to establish the formulation that maximizes cell-nanoparticle specific interaction and has superior biological performance. Our work shows that the precise adjustment of the PEG coverage-density presents a significant impact on the selectivity and bioactivity of the developed formulation, emphasizing the need for the fine-tuning of PEG-modified nanoparticles for the successful development of the next-generation nanomedicines.
Collapse
|