1
|
Singh M, Teodorescu DL, Rowlett M, Wang SX, Balcells M, Park C, Bernardo B, McGarel S, Reeves C, Mehra MR, Zhao X, Yuk H, Roche ET. A Tunable Soft Silicone Bioadhesive for Secure Anchoring of Diverse Medical Devices to Wet Biological Tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307288. [PMID: 37865838 PMCID: PMC11801177 DOI: 10.1002/adma.202307288] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/21/2023] [Indexed: 10/23/2023]
Abstract
Silicone is utilized widely in medical devices for its compatibility with tissues and bodily fluids, making it a versatile material for implants and wearables. To effectively bond silicone devices to biological tissues, a reliable adhesive is required to create a long-lasting interface. BioAdheSil, a silicone-based bioadhesive designed to provide robust adhesion on both sides of the interface is introduced here, facilitating bonding between dissimilar substrates, namely silicone devices and tissues. The adhesive's design focuses on two key aspects: wet tissue adhesion capability and tissue-infiltration-based long-term integration. BioAdheSil is formulated by mixing soft silicone oligomers with siloxane coupling agents and absorbents for bonding the hydrophobic silicone device to hydrophilic tissues. Incorporation of biodegradable absorbents eliminates surface water and controls porosity, while silane crosslinkers provide interfacial strength. Over time, BioAdheSil transitions from nonpermeable to permeable through enzyme degradation, creating a porous structure that facilitates cell migration and tissue integration, potentially enabling long-lasting adhesion. Experimental results demonstrate that BioAdheSil outperforms commercial adhesives and elicits no adverse response in rats. BioAdheSil offers practical utility for adhering silicone devices to wet tissues, including long-term implants and transcutaneous devices. Here, its functionality is demonstrated through applications such as tracheal stents and left ventricular assist device lines.
Collapse
Affiliation(s)
- Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Debbie L. Teodorescu
- Department of Cardiology, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, USA
| | - Meagan Rowlett
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophie X. Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Bioengineering Department, Institut Químic de Sarrià, Ramon Llull Univ, Barcelona, Spain
| | - Clara Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - Bruno Bernardo
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sian McGarel
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charlotte Reeves
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mandeep R. Mehra
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
- SanaHeal, Inc., Cambridge, MA, USA
| | - Ellen T. Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| |
Collapse
|
2
|
Shafique H, de Vries J, Strauss J, Khorrami Jahromi A, Siavash Moakhar R, Mahshid S. Advances in the Translation of Electrochemical Hydrogel-Based Sensors. Adv Healthc Mater 2023; 12:e2201501. [PMID: 36300601 DOI: 10.1002/adhm.202201501] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Indexed: 02/03/2023]
Abstract
Novel biomaterials for bio- and chemical sensing applications have gained considerable traction in the diagnostic community with rising trends of using biocompatible and lowly cytotoxic material. Hydrogel-based electrochemical sensors have become a promising candidate for their swellable, nano-/microporous, and aqueous 3D structures capable of immobilizing catalytic enzymes, electroactive species, whole cells, and complex tissue models, while maintaining tunable mechanical properties in wearable and implantable applications. With advances in highly controllable fabrication and processability of these novel biomaterials, the possibility of bio-nanocomposite hydrogel-based electrochemical sensing presents a paradigm shift in the development of biocompatible, "smart," and sensitive health monitoring point-of-care devices. Here, recent advances in electrochemical hydrogels for the detection of biomarkers in vitro, in situ, and in vivo are briefly reviewed to demonstrate their applicability in ideal conditions, in complex cellular environments, and in live animal models, respectively, to provide a comprehensive assessment of whether these biomaterials are ready for point-of-care translation and biointegration. Sensors based on conductive and nonconductive polymers are presented, with highlights of nano-/microstructured electrodes that provide enhanced sensitivity and selectivity in biocompatible matrices. An outlook on current challenges that shall be addressed for the realization of truly continuous real-time sensing platforms is also presented.
Collapse
Affiliation(s)
- Houda Shafique
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Justin de Vries
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Julia Strauss
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | | | | | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| |
Collapse
|
3
|
Singh J, Steele TWJ, Lim S. Bacterial cellulose adhesive patches designed for soft mucosal interfaces. BIOMATERIALS ADVANCES 2022; 144:213174. [PMID: 36428212 DOI: 10.1016/j.bioadv.2022.213174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
The wet environment in the oral cavity is challenging for topical disease management approaches. The compromised material properties leading to weak adhesion and short retention (<8 h) in such environment result in frequent reapplication of the therapeutics. Composites of bacterial cellulose (BC) and carbene-based bioadhesives attempt to address these shortcomings. Previous designs comprised of aqueous formulations. The current design, for the first time, presents dry, shelf-stable cellulose patches for convenient ready-to-use application. The dry patches simultaneously remove tissue surface hydration while retaining carbene-based photocuring and offers on-demand adhesion. The dry patch prototypes are optimized by controlling BC/adhesive mole ratios and dehydration technique. The adhesion strength is higher than commercial denture adhesives on soft mucosal tissues. The structural integrity is maintained for a minimum of 7 days in aqueous environment. The patches act as selective nanoporous barrier against bacteria while allowing permeation of proteins. The results support the application of BC-based adhesive patches as a flexible platform for wound dressings, drug depots, or combination thereof.
Collapse
Affiliation(s)
- Juhi Singh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore; School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457, Singapore.
| | - Terry W J Steele
- School of Materials Science and Engineering (MSE), Division of Materials Technology, Nanyang Technological University (NTU), Singapore 639798, Singapore.
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457, Singapore.
| |
Collapse
|
4
|
Singh J, Steele TWJ, Lim S. Fibrillated bacterial cellulose liquid carbene bioadhesives for mimicking and bonding oral cavity surfaces. J Mater Chem B 2022; 10:2570-2583. [PMID: 34981107 DOI: 10.1039/d1tb02044g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Topical treatments for oral wounds and infections exhibit weak adhesion to wet surfaces which results in short retention duration (6-8 hours), frequent dosing requirement and patient incompatibility. To address these limitations, aqueous composites made of fibrillated bacterial cellulose and photoactive bioadhesives are designed for soft epithelial surfaces. The aqueous composites crosslink upon photocuring within a minute and exhibit a transition from viscous to elastic adhesive hydrogels. The light-cured composites have shear moduli mimicking oral mucosa and other soft tissues. The tunable adhesion strength ranges from 3 to 35 kPa on hydrated tissue-mimicking surfaces (collagen film). The results support the application of bacterial cellulose hydrogel systems for potential treatment of mucosal wounds.
Collapse
Affiliation(s)
- Juhi Singh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, 637335, Singapore. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, 637457, Singapore.
| | - Terry W J Steele
- School of Materials Science and Engineering (MSE), Division of Materials Technology, Nanyang Technological University (NTU), 639798, Singapore.
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, 637457, Singapore.
| |
Collapse
|
5
|
Singh M, Solic I, Steele TWJ. Hydrophobic Bioadhesive Composites for Human Motion Detection. ACS Macro Lett 2021; 10:1353-1358. [PMID: 35549014 DOI: 10.1021/acsmacrolett.1c00559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conductive hydrogels are rapidly rising as sensing materials for bioelectronics applications, but lack mechanical and adhesion strength due to their excess water content. We propose a diazirine-grafted polycaprolactone adhesive (CaproGlu)/carbon nanotubes (CNTs) composite that can provide wet adhesion and strong mechanical properties at the tissue-machine interface. The introduced CNTs not only reinforced the CaproGlu, but also formed electrically conducting pathways. The CaproGlu composites exhibited conductivity of 0.1 S m-1 and a charge storage capacity of 5 μC cm-2. The resulting composites are biocompatible and can be used as strain sensors to detect mechanical deformations.
Collapse
Affiliation(s)
- Manisha Singh
- NTU-Northwestern Institute for Nanomedicine (NNIN), Interdisciplinary Graduate School (IGS), Nanyang Technological University (NTU), Singapore 637553, Singapore.,School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Ivan Solic
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Terry W J Steele
- NTU-Northwestern Institute for Nanomedicine (NNIN), Interdisciplinary Graduate School (IGS), Nanyang Technological University (NTU), Singapore 637553, Singapore.,School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| |
Collapse
|
6
|
Singh J, Tan NCS, Mahadevaswamy UR, Chanchareonsook N, Steele TWJ, Lim S. Bacterial cellulose adhesive composites for oral cavity applications. Carbohydr Polym 2021; 274:118403. [PMID: 34702445 DOI: 10.1016/j.carbpol.2021.118403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/22/2021] [Accepted: 07/04/2021] [Indexed: 11/19/2022]
Abstract
Topical approaches to oral diseases require frequent dosing due to limited retention time. A mucoadhesive drug delivery platform with extended soft tissue adhesion capability of up to 7 days is proposed for on-site management of oral wound. Bacterial cellulose (BC) and photoactivated carbene-based bioadhesives (PDz) are combined to yield flexible film platform for interfacing soft tissues in dynamic, wet environments. Structure-activity relationships evaluate UV dose and hydration state with respect to adhesive strength on soft tissue mimics. The bioadhesive composite has an adhesion strength ranging from 7 to 17 kPa and duration exceeding 48 h in wet conditions under sustained shear forces, while other mucoadhesives based on hydrophilic macromolecules exhibit adhesion strength of 0.5-5 kPa and last only a few hours. The work highlights the first evaluation of BC composites for mucoadhesive treatments in the buccal cavity.
Collapse
Affiliation(s)
- Juhi Singh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, Singapore 637457, Singapore.
| | - Nigel C S Tan
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798, Singapore.
| | - Usha Rani Mahadevaswamy
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, Singapore 637457, Singapore.
| | - Nattharee Chanchareonsook
- Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore (NDCS), 5 Second Hospital Avenue, Singapore 16893, Singapore
| | - Terry W J Steele
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798, Singapore.
| | - Sierin Lim
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, Singapore 637457, Singapore.
| |
Collapse
|
7
|
Tao C, Jin M, Yao H, Wang DA. Dopamine based adhesive nano-coatings on extracellular matrix (ECM) based grafts for enhanced host-graft interfacing affinity. NANOSCALE 2021; 13:18148-18159. [PMID: 34709280 DOI: 10.1039/d1nr06284k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interfacing affinity between grafts and host tissues is an urgent issue that needs to be addressed for the clinical translation of tissue engineered extracellular matrix (ECM) based grafts. Dopamine is known as a universal adhesive, the catechol groups on which could form chelating bonds with metal ions. Herein we developed an adhesive nano-coating on ECM based grafts which could crosslink in situ with ferric ions for fixation with surrounding tissues after implantation without affecting the porous structures of the grafts. Therefore, decellularized living hyaline cartilage graft (dLhCG), a model ECM-based graft, with dopamine based natural biological material adhesive coatings was manufactured to address the interfacing affinity issue between ECM-based grafts and cartilage. A macromolecule backbone was needed for the coating material to avoid the formation of a rigid crosslinking system and adverse effects caused by small molecules of dopamine. Chondroitin sulfate (CS), a cartilage derived sulfated GAG, was chosen as the backbone to fabricate dopamine modified CS (CSD) with no impurities introduced to the joint. Dopamine modified serum albumin (BCD) was also chosen for the favorable biocompatibility of albumin. Both dLhCG coated with CSD and dLhCG coated with BCD showed enhanced adhesive strength with cartilage after chelating with ferric ions in situ compared to dLhCG and further potential in improving the interfacing affinity of dLhCG with cartilage.
Collapse
Affiliation(s)
- Chao Tao
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR.
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Min Jin
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China.
| | - Dong-An Wang
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR.
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, P. R. China
| |
Collapse
|
8
|
Wanasingha N, Dutta NK, Choudhury NR. Emerging bioadhesives: from traditional bioactive and bioinert to a new biomimetic protein-based approach. Adv Colloid Interface Sci 2021; 296:102521. [PMID: 34534751 DOI: 10.1016/j.cis.2021.102521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 12/29/2022]
Abstract
Bioadhesives have reached significant milestones over the past two decades. Research has shown not only to produce adhesives capable of adhering to dry tissue but recently wet tissue as well. However, most bioadhesives developed have exhibited high adhesion strength yet lack other properties required for versatility in application, such as elasticity, biocompatibility and biodegradability. Adapting from limitations met from early bioadhesives and meeting the current demand allows novel bioadhesives to reach new milestones for the future. In this review, we overview the progression and variations of bioadhesives, current trends, characterisation techniques and conclude with future perspectives for bioadhesives for tissue engineering applications.
Collapse
Affiliation(s)
- Nisal Wanasingha
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Naba K Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | | |
Collapse
|
9
|
Djordjevic I, Wicaksono G, Šolić I, Singh J, Kaku TS, Lim S, Ang EWJ, Blancafort L, Steele TWJ. Rapid Activation of Diazirine Biomaterials with the Blue Light Photocatalyst. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36839-36848. [PMID: 34342218 DOI: 10.1021/acsami.1c08581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbene-based macromolecules are an emerging new stimuli-sensitive class of biomaterials that avoid the impediments of free radical polymerization but maintain a rapid liquid-to-biorubber transition. Activation of diazirine-grafted polycaprolactone polyol (CaproGlu) is limited to UVA wavelengths that have tissue exposure constraints and limited light intensities. For the first time, UVA is circumvented with visible light-emitting diodes at 445 nm (blue) to rapidly activate diazirine-to-carbene covalent cross-linking. Iridium photocatalysts serve to initiate diazirine, despite having little to no absorption at 445 nm. CaproGlu's liquid organic matrix dissolves the photocatalyst with no solvents required, creating a light transparent matrix. Considerable differences in cross-linking chemistry are observed in UVA vs visible/photocatalyst formulations. Empirical analysis and theoretical calculations reveal a more efficient conversion of diazirine directly to carbene with no diazoalkane intermediate detected. Photorheometry results demonstrate a correlation between shear moduli, joules light dose, and the lower limits of photocatalyst concentration required for the liquid-to-biorubber transition. Adhesion strength on ex vivo hydrated tissues exceeds that of cyanoacrylates, with a fixation strength of up to 20 kg·f·cm2. Preliminary toxicity assessment on leachates and materials directly in contact with mammalian fibroblast cells displays no signs of fibroblast cytotoxicity.
Collapse
Affiliation(s)
- Ivan Djordjevic
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Gautama Wicaksono
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Ivan Šolić
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Juhi Singh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Block N1.3, 70 Nanyang Drive, Singapore 637457
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335
| | - Tanvi Sushil Kaku
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Block N1.3, 70 Nanyang Drive, Singapore 637457
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Block N1.3, 70 Nanyang Drive, Singapore 637457
| | - Elwin Wei Jian Ang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Lluís Blancafort
- Departament de Química and Institut de Química Computacional i Catàlisi. Facultat de Ciències, Universitat de Girona, C/M.A. Capmany 69, Girona 17003, Spain
| | - Terry W J Steele
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| |
Collapse
|
10
|
Ambrosi A, Singh M, Webster RD, Steele TWJ. Precise Control of Diazirine Reduction to Tune the Mechanical Properties of Electrocuring Adhesives. ChemElectroChem 2021. [DOI: 10.1002/celc.202100594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Adriano Ambrosi
- Division of Chemistry & Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE Shandong Key Laboratory of Biochemical Analysis Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Manisha Singh
- NTU-Northwestern Institute for Nanomedicine (NNIN) Interdisciplinary Graduate School (IGS) Nanyang Technological University Singapore 637553 Singapore
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Richard D. Webster
- Division of Chemistry & Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Terry W. J. Steele
- NTU-Northwestern Institute for Nanomedicine (NNIN) Interdisciplinary Graduate School (IGS) Nanyang Technological University Singapore 637553 Singapore
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
11
|
Sunlight activated film forming adhesive polymers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112240. [PMID: 34225880 DOI: 10.1016/j.msec.2021.112240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Stimuli-sensitive biomaterials that are activated by light are in need of formulations that are stable under indoor lighting yet can be activated under direct sunlight. Carbene-based bioadhesives are a new generation of film-forming polymers that are stable under indoor lighting yet are rapidly activated with low-energy UVA light, but have never been evaluated under sunlight exposure. Previous investigations have evolved two flexible carbene-based platforms, where aryl-diazirine is grafted on to polyamidoamine dendrimers (PAMAM-NH2; generation-5) or hydrophobic liquid polycaprolactone tetrol to yield G5-Dzx and CaproGlu, respectively. For the first time the activation of G5-Dzx and CaproGlu is investigated by natural sunlight with intensities up to 10 mW·cm-2. Structure-property relationships of bioadhesion are investigated by: (1) joules dose of sunlight; (2) bioadhesive polymer structure; and (3) optical concentrators of magnifying glass and Fresnel lens. Using only natural sunlight, adhesion strength could be tuned from 20 to 150 kPa with crosslinking achieved in under 1 min. The results show that carbene-based polymers are a class of stimuli-sensitive biomaterials that are stable to indoor lighting, yet can be rapidly activated under direct sunlight, which may be useful for topical film forming polymers or as active ingredients in sunscreen formulations.
Collapse
|
12
|
Singh M, Varela CE, Whyte W, Horvath MA, Tan NCS, Ong CB, Liang P, Schermerhorn ML, Roche ET, Steele TWJ. Minimally invasive electroceutical catheter for endoluminal defect sealing. SCIENCE ADVANCES 2021; 7:eabf6855. [PMID: 33811080 PMCID: PMC11057783 DOI: 10.1126/sciadv.abf6855] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Surgical repair of lumen defects is associated with periprocedural morbidity and mortality. Endovascular repair with tissue adhesives may reduce host tissue damage, but current bioadhesive designs do not support minimally invasive deployment. Voltage-activated tissue adhesives offer a new strategy for endoluminal repair. To facilitate the clinical translation of voltage-activated adhesives, an electroceutical patch (ePATCH) paired with a minimally invasive catheter with retractable electrodes (CATRE) is challenged against the repair of in vivo and ex vivo lumen defects. The ePATCH/CATRE platform demonstrates the sealing of lumen defects up to 2 millimeters in diameter on wet tissue substrates. Water-tight seals are flexible and resilient, withstanding over 20,000 physiological relevant stress/strain cycles. No disruption to electrical signals was observed when the ePATCH was electrically activated on the beating heart. The ePATCH/CATRE platform has diverse potential applications ranging from endovascular treatment of pseudo-aneurysms/fistulas to bioelectrodes toward electrophysiological mapping.
Collapse
Affiliation(s)
- Manisha Singh
- NTU-Northwestern Institute for Nanomedicine (NNIN), Interdisciplinary Graduate School (IGS), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Singapore
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Claudia E Varela
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA
| | - William Whyte
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Markus A Horvath
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Nigel C S Tan
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Chee Bing Ong
- Histopathology/Advanced Molecular Pathology Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Patric Liang
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Marc L Schermerhorn
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Terry W J Steele
- NTU-Northwestern Institute for Nanomedicine (NNIN), Interdisciplinary Graduate School (IGS), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Singapore.
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| |
Collapse
|
13
|
Qiu L, Qi See AA, Steele TWJ, Kam King NK. Bioadhesives in neurosurgery: a review. J Neurosurg 2020; 133:1928-1938. [PMID: 31731262 DOI: 10.3171/2019.8.jns191592] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/16/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neurosurgery presents unique surgical challenges arising from delicate neural structures, limited accessibility, and the risk of CSF leakage that can lead to CNS infections. Sutures and staples may have limited applicability in the complex anatomical constraints of cranial and spinal surgeries, especially in trauma settings when time is of the essence. Surgical bioadhesives are emerging as attractive alternatives because they avoid traumatic application methods, provide a stress-distributed fixation, and provide good cosmesis and outcomes. This article presents the history of the development of surgical bioadhesives, and is also a review of current applications of commercial surgical bioadhesives within neurosurgical procedures and the unmet clinical needs that should be addressed in bioadhesives technologies. METHODS A PubMed literature search was performed using the terms "(glue OR bioadhesive OR fibrin OR tisseel OR evicel OR tachosil OR cyanoacrylate OR duraseal OR bioglue) AND (neurosurgery OR spine OR spinal OR dural OR microvascular decompression OR transsphenoidal OR endovascular)." Of 2433 records screened, 168 studies were identified that described the use of bioadhesives in neurosurgical procedures. RESULTS The greatest number of studies describing the use of bioadhesives in neurosurgery were identified for endovascular embolization, followed by dural closure and transsphenoidal surgeries. Other common areas of application were for microvascular decompression, skin closure, peripheral nerve repair, and other novel uses. Numerous case reports were also identified describing complications associated with bioadhesive use. CONCLUSIONS Despite the paucity of approved indications, surgical bioadhesive use in neurosurgical procedures is prevalent. However, current bioadhesives still each have their own limitations and research is intense in the development of novel solutions.
Collapse
Affiliation(s)
- Liming Qiu
- 1Department of Neurosurgery, National Neuroscience Institute, Singapore
- 2Department of Neurosurgery, Singapore General Hospital, Singapore
- 3School of Materials Science & Engineering, Nanyang Technological University, Singapore; and
| | - Angela An Qi See
- 1Department of Neurosurgery, National Neuroscience Institute, Singapore
- 2Department of Neurosurgery, Singapore General Hospital, Singapore
| | - Terry W J Steele
- 3School of Materials Science & Engineering, Nanyang Technological University, Singapore; and
| | - Nicolas Kon Kam King
- 1Department of Neurosurgery, National Neuroscience Institute, Singapore
- 2Department of Neurosurgery, Singapore General Hospital, Singapore
- 4Duke-NUS Medical School, Singapore
| |
Collapse
|
14
|
Photocurable platelet rich plasma bioadhesives. Acta Biomater 2020; 117:133-141. [PMID: 32966923 DOI: 10.1016/j.actbio.2020.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Closure of wounds with tissue adhesives has many advantages over sutures, but existing synthetic adhesives are toxic and have poor workability. Blood-derived adhesives display complete resorption but have adhesion too weak for reliable wound dressings. We propose a semi-synthetic design that combines the positive attributes of synthetic and blood-derived tissue adhesives. PAMAM-g-diazirine (PDz) is a rapidly gelling bioadhesive miscible in both aqueous and organic solvents. PDz blended with platelet-rich plasma (PRP) forms PDz/PRP composite, a semi-synthetic formulation that combines PDz's wet tissue adhesion with PRP's potent wound healing properties. Light-activated PDz/PRP bioadhesive composite has similar elasticity to soft tissues and behaves as an induced hemostat-an unmet clinical need for rapid wound dressings. PDz/PRP composite applied to in-vivo full-thickness wounds observed a 25% reduction in inflammation, as assessed by the host-cell response.
Collapse
|
15
|
Tan NCS, Ghosh A, Steele TWJ. Structure–Activity Relationships of Voltaglue Organic Blends. Macromol Rapid Commun 2020; 41:e2000188. [DOI: 10.1002/marc.202000188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/22/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Nigel C. S. Tan
- School of Materials Science and Engineering (MSE) Nanyang Technological University (NTU) Singapore 639798 Singapore
| | - Animesh Ghosh
- School of Materials Science and Engineering (MSE) Nanyang Technological University (NTU) Singapore 639798 Singapore
| | - Terry W. J. Steele
- School of Materials Science and Engineering (MSE) Nanyang Technological University (NTU) Singapore 639798 Singapore
| |
Collapse
|
16
|
Singh M, Yin CS, Page SJ, Liu Y, Wicaksono G, Pujar R, Choudhary SK, Kulkarni GU, Chen J, Hanna JV, Webster RD, Steele TWJ. Synergistic Voltaglue Adhesive Mechanisms with Alternating Electric Fields. CHEMISTRY OF MATERIALS 2020; 32:2440-2449. [DOI: 10.1021/acs.chemmater.9b04962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Manisha Singh
- NTU-Northwestern Institute for Nanomedicine (NNIN), Interdisciplinary Graduate School (IGS), Nanyang Technological University (NTU), 50 Nanyang Drive, 637553 Singapore
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| | - Cheong See Yin
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| | - Samuel J. Page
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Yuqing Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute (IPRI), Australian Institute of Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW 2522, Australia
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Gautama Wicaksono
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| | - Rajashekhar Pujar
- Centre for Nano and Soft Matter Sciences, Jalahalli, Bengaluru 560013, India
| | | | | | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute (IPRI), Australian Institute of Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW 2522, Australia
| | - John V. Hanna
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Terry W. J. Steele
- NTU-Northwestern Institute for Nanomedicine (NNIN), Interdisciplinary Graduate School (IGS), Nanyang Technological University (NTU), 50 Nanyang Drive, 637553 Singapore
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| |
Collapse
|
17
|
Tertiary blends of PAMAM/PEG/PEG tissue bioadhesives. J Mech Behav Biomed Mater 2020; 101:103405. [DOI: 10.1016/j.jmbbm.2019.103405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/30/2019] [Accepted: 08/24/2019] [Indexed: 11/24/2022]
|
18
|
Pinnaratip R, Bhuiyan MSA, Meyers K, Rajachar RM, Lee BP. Multifunctional Biomedical Adhesives. Adv Healthc Mater 2019; 8:e1801568. [PMID: 30945459 PMCID: PMC6636851 DOI: 10.1002/adhm.201801568] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/07/2019] [Indexed: 12/21/2022]
Abstract
Currently available biomedical adhesives are mainly engineered to have one function (i.e., providing mechanical support for the repaired tissue). To improve the performance of existing bioadhesives and broaden their applications in medicine, numerous multifunctional bioadhesives are reported in the literature. These adhesives can be categorized as passive or active by design. Passive multifunctional bioadhesives contain inherent compositions and structural designs that can carry out additional functions without added external influences. These adhesives exhibit new functionalities such as antimicrobial properties, self-healing abilities, the ability to promote cellular ingrowth, and the ability to be reshaped. Conversely, active multifunctional bioadhesives respond to environmental changes (e.g., pH, temperature, electricity, light, and biomolecule concentration), which initiate a change in the adhesive to release encapsulated drugs or to activate or deactivate the bioadhesive for interfacial binding. This review article highlights recent advances in multifunctional bioadhesives.
Collapse
Affiliation(s)
- Rattapol Pinnaratip
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Md. Saleh Akram Bhuiyan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Kaylee Meyers
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Rupak M. Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931
| |
Collapse
|
19
|
Singh M, Webster RD, J. Steele TW. Voltaglue Electroceutical Adhesive Patches for Localized Voltage Stimulation. ACS APPLIED BIO MATERIALS 2019; 2:2633-2642. [DOI: 10.1021/acsabm.9b00303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Manisha Singh
- NTU-Northwestern Institute for Nanomedicine (NNIN), Interdisciplinary Graduate School (IGS), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553
- School of Materials Science and Engineering (MSE), Division of Materials Technology, Nanyang Technological University (NTU), Singapore 639798
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Terry W. J. Steele
- NTU-Northwestern Institute for Nanomedicine (NNIN), Interdisciplinary Graduate School (IGS), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553
- School of Materials Science and Engineering (MSE), Division of Materials Technology, Nanyang Technological University (NTU), Singapore 639798
| |
Collapse
|
20
|
Gan L, Tan NCS, Gupta A, Singh M, Pokholenko O, Ghosh A, Zhang Z, Li S, Steele TWJ. Self curing and voltage activated catechol adhesives. Chem Commun (Camb) 2019; 55:10076-10079. [DOI: 10.1039/c9cc04166d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Catechol adhesives are designed for curing with a low voltage signal—no oxidants or metal chelators are required.
Collapse
Affiliation(s)
- Lu Gan
- School of Materials Science and Engineering (MSE)
- Division of Materials Technology
- Nanyang Technological University (NTU)
- Singapore 639798
| | - Nigel C. S. Tan
- School of Materials Science and Engineering (MSE)
- Division of Materials Technology
- Nanyang Technological University (NTU)
- Singapore 639798
| | - Avi Gupta
- Department of Materials Science and Engineering
- Indian Institute of Technology
- Kanpur
- India
| | - Manisha Singh
- School of Materials Science and Engineering (MSE)
- Division of Materials Technology
- Nanyang Technological University (NTU)
- Singapore 639798
- NTU-Northwestern Institute for Nanomedicine (NNIN)
| | - Oleksandr Pokholenko
- School of Materials Science and Engineering (MSE)
- Division of Materials Technology
- Nanyang Technological University (NTU)
- Singapore 639798
| | - Animesh Ghosh
- School of Materials Science and Engineering (MSE)
- Division of Materials Technology
- Nanyang Technological University (NTU)
- Singapore 639798
| | - Zhonghan Zhang
- School of Materials Science and Engineering (MSE)
- Division of Materials Technology
- Nanyang Technological University (NTU)
- Singapore 639798
| | - Shuzhou Li
- School of Materials Science and Engineering (MSE)
- Division of Materials Technology
- Nanyang Technological University (NTU)
- Singapore 639798
| | - Terry W. J. Steele
- School of Materials Science and Engineering (MSE)
- Division of Materials Technology
- Nanyang Technological University (NTU)
- Singapore 639798
| |
Collapse
|